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Abstract

The rapidly growing biomedical literature
has been a challenging target for natu-
ral language processing algorithms. One
of the tasks these algorithms focus on is
called named entity recognition (NER),
often employed to tag gene mentions.
Here we describe a new approach for
this task, an approach that uses graph-
based semi-supervised learning to train a
Conditional Random Field (CRF) model.
Benchmarking it on the BioCreative II
Gene Mention tagging task, we achieved
statistically significant improvements in F-
measure over BANNER, a widely used
biomedical NER system. We note that
our tool is transductive and modular in
nature, and can be integrated with other
CRF-based supervised NER tools.

1 Introduction

Detecting biomedical named entities such as genes
and proteins is one of the first steps in many
natural language processing systems that analyze
biomedical text. Finding relations between enti-
ties, and expanding knowledge bases are examples
of research that highly depend on the accuracy of
gene and protein mention tagging.

Named entity recognition is typically modelled
as a sequence tagging problem (Sha and Pereira,
2003). One of the most commonly used mod-
els for sequence tagging is a Conditional Random
Field (CRF) (Lafferty et al., 2001; Sha and Pereira,
2003).

Many popular and best performing biomedical
named entity recognition systems, such as BAN-
NER (Leaman et al., 2008), Gimli (Campos et al.,
2013) and BANNER-CHEMDNER (Munkhdalai
et al., 2015) use CRF as their core machine learn-
ing model built on the MALLET toolkit (McCal-
lum, 2002).

Inspired by the success of graph-based semi-
supervised learning methods in other NLP
tasks (Subramanya et al., 2010; Zhu et al., 2003;
Subramanya and Bilmes, 2009; Alexandrescu and
Kirchhoff, 2009; Liu et al., 2012; Saluja et al.,
2014; Tamura et al., 2012; Talukdar et al., 2008;
Das and Petrov, 2011), we integrated the graph
based semi-supervised algorithm of Subramanya
et al. (2010) and adapted their approach to im-
prove on the results from BANNER. We show
that our approach achieves a statistically signifi-
cant improvement in terms of F-measure on the
BioCreative II dataset for gene mention tagging.

Semi-supervised learning for gene mention tag-
ging is not without precedent. There has been
several semi-supervised approaches for the gene
mention task and they have always been more
successful than fully supervised approaches (Jiao
et al., 2006; Ando, 2007; Campos et al., 2013;
Munkhdalai et al., 2015).

Ando (2007) used a semi-supervised approach,
Alternative Structure Optimization or ASO, in the
BioCreative II gene mention shared task along
with other extensions, such as using a lexicon or
combining several classifiers. ASO ranked first
among all competitors in the shared task compe-
tition 2007. Ando reported usage of unlabeled
data as the most useful part of his system improv-
ing the F-measure of the baseline by 2.09 points
where the complete (winning) system had a to-
tal improvement of 3.23 points over the baseline
CRF (Ando, 2007). Jiao et al. (2006) used condi-
tional entropy over the unlabeled data combined
with the conditional likelihood over the labeled
data in the objective function of CRF (Jiao et al.,
2006). Munkhdalai et al. (2015) trained word rep-
resentations using Brown clustering (Brown et al.,
1992) and word2vec (Mikolov et al., 2013) on
MEDLINE and PMC document collections and
used them as features along with traditional fea-
tures in a CRF. Like many of these approaches we
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also use unlabeled data to augment our baseline
CRF model. In all these previous studies the un-
labelled data was orders of magnitude more than
labelled data and distinct from the test data.

In this paper we take a transductive approach
and use the test set as our unlabelled data. More-
over, our approach is orthogonal to all these ap-
proaches and can be used to augment many of
them. This approach can be easily implemented
as a post-processing step in any system that uses
a CRF model. Examples of such systems in-
clude Gimli (Campos et al., 2013) and BANNER-
CHEMNDNER (Munkhdalai et al., 2015). These
tools have achieved the highest F-scores in the lit-
erature after ASO (Ando, 2007). Our approach
relies on the extraction of label distributions from
the CRF and augments the decoding algorithm to
incorporate the new information about gene men-
tions from the graph-based learning approach we
describe in this paper.

2 Method

Like many previous studies (Leaman et al., 2008;
Munkhdalai et al., 2015; Campos et al., 2013),
we formulate the gene mention tagging prob-
lem as a word level sequence prediction problem,
where labels for each word in the input are either
Gene-Beginning, Gene-Inside, and Outside (not
a gene). This representation is called IOB (for
inside-outside-beginning). We applied a graph-
based semi-supervised learning (SSL) approach,
previously shown effective on a similar labelling
task, part-of-speech tagging, for gene mention tag-
ging. (Subramanya et al., 2010)

In graph-based SSL, a graph is constructed to
represent partially labelled data. Each node in the
graph represents a single word-level gene men-
tion tagging decision and the edges between the
nodes represent similarity between the nodes. The
goal is to associate probability distributions over
the IOB tags to all vertices. Label distributions
for vertices that appear in labelled data are esti-
mated based on the reference labels and propagate
to vertices for unlabelled data in the graph. These
label distributions are combined with the CRF de-
coding algorithm used for labelling the test data.
Graph-based SSL is categorized into inductive and
transductive approaches. In inductive settings (e.g.
Subramanya et al. (2010)), a model is trained and
can be used as-is for unseen data. In transduc-
tive settings however, the unlabelled data includes

test data. We took a transductive approach in con-
structing our graph on the union of train set and
test set as labelled and unlabelled data.

Since the graph is the cornerstone of the algo-
rithm, let us describe its construction and usage
before the overall algorithm.

2.1 Graph Construction

We use the following steps for constructing the
graph for the gene mention tagging task adapted
from the graph construction for part-of-speech
tagging described in Subramanya et al. (2010):

1. Each vertex represents a 3-gram type and the
middle word of this 3-gram is the word which
is tagged as a gene mention using the IOB
tags. The label distribution for this middle
word is learned during graph propagation and
subsequently combined with the CRF model
at test time.

2. A vertex is represented by a vector of point-
wise mutual information values between fea-
ture instances and its 3-gram type.

3. Edge weights represent the similarity be-
tween vertices and are obtained by comput-
ing the cosine similarity of feature vectors of
their two end vertices.

4. For each vertex only the K nearest neigh-
bours are kept (default = 10).

We considered several feature sets, namely con-
textual features (Table 1), simplified contextual
features (Table 2), all features from the base CRF
model, and the most informative features from the
base CRF model. We picked the simplified con-
textual features based on preliminary results using
cross-validation on our development set. To rep-
resent a vertex v with 3-gram w−1w0w1, we look
at all occurrences of its 3-gram in the text, con-
sider the larger context w−2w−1w0w1w2 and get
the lemmas of these words. v is represented by a
vector of point-wise mutual information values be-
tween all possible feature instances (e.g. all possi-
ble lemmas for w−2) and w−1w0w1.

We eliminated extremely frequent features (de-
fault > 10,000) to reduce the time complexity of
graph construction. This should not affect the
structure of the graph substantially because the
point-wise mutual information between a feature
and any given vertex decreases as the frequency
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Description Feature
3-gram + Context w−2 w−1 w0 w1 w2

3-gram w−1 w0 w1

Left Context w−1 w−2

Right Context w1 w2

Center Word w0

Trigram − Center Word w−1 w1

Left Word + Right Context w−1 w1 w2

Left Context + Right Word w−2 w−1 w1

Table 1: Complete set of contextual features.

Description Feature
Left Context Word w−2

Left Word w−1

Center Word w0

Right Word w1

Right Context Word w2

Table 2: Simplified set of contextual features.

of the feature increases leaving extremely frequent
features with relatively small weights.

2.2 Graph Propagation
In graph propagation we associate any given ver-
tex u with a label distribution Xu that represents
how likely we think each label is for that vertex.

The goal of graph-based SSL is to propagate
existing knowledge about the labels through the
graph. The initial knowledge about graph nodes is
provided by the labeled data and potentially some
prior knowledge. Figure 1 shows how graph prop-
agation can assign label distributions to unlabelled
vertices and change the label distributions coming
from labelled data.

Propagation is accomplished by optimizing an
objective function over the label distributions at
each node in the graph. The objective function
consists of three types of constraints:

1. For any labeled vertex u, the associated label
distribution Xu should be close to the refer-
ence distribution X̂u (obtained from labeled
data);

2. Adjacent vertices u and k should have similar
label distributions Xu and Xk;

3. The label distributions of all vertices should
comply with the prior knowledge, if such
knowledge exists, or be uniformly dis-
tributed, otherwise.

The following objective function represents
these three components:

C(X) =
∑
u∈L

||Xu − X̂u||22

+µ
∑
u∈V

∑
k∈N(u)

wu,k||Xu −Xk||22

+ν
∑
u∈V

||Xu − U ||22 (1)

where u and v are nodes in the graph, L is the
set of labelled vertices, V is the set of all vertices,
N(u) is the set of neighbours of u, U is the uni-
form distribution over all labels, and µ and ν are
weight constants for constraints 2 and 3, respec-
tively. We used Euclidean distance as the distance
metric.

While the first two terms in the objective func-
tion, and their corresponding constraints make in-
tuitive sense, the uniformity constraint needs fur-
ther explanation. The rationale behind using dis-
tance from uniform distribution is to avoid prefer-
ring a label over others in the absence of strong
evidence.

The objective function is optimized using
stochastic gradient descent. We implement the op-
timization algorithm for this as described in Sub-
ramanya et al. (2010):

X
(m)
i (y) =

γi(y)
ki

γi(y) =X̂i(y)δ(i ∈ L)

+
∑

k∈N(i)

wi,kX
m−1
k (y) + ν

1
Y

ki =δ(i ∈ L) + ν + µ
∑

k∈N(i)

wi,k

(2)

X
(m)
i andX(m−1)

i denote the label distributions
of vertex i in iterations m and m− 1, respectively,
δ(i ∈ L) is 1 if and only if i is a labeled vertex,
and Y is the number of labels.

2.3 Overall algorithm
Once propagated the label distributions through
the graph, we would need to combine what we
learned in the graph with the tagging results from
the CRF model. For that we use a self-training al-
gorithm, shown in Figure 2.
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On an input of a partially-labeled corpus, we
first train a CRF model in a supervised fashion on
the labeled data (crf-train, line 1); we then use this
trained CRF model to assign label probability dis-
tributions to each word in the entire (labeled + un-
labeled) corpus (posterior decode, line 4). As a
result, each n-gram token in the corpus has a la-
bel distribution (the posteriors). For each n-gram
type u (a vertex in the graph), we find all instances
(n-gram tokens) of u and average over the label
distributions of these instances to get a label dis-
tribution for u (token to type, line 5). Next, we
perform graph-propagation (i.e. we optimize the
objective function in equation 1) to learn the label
distributions for all vertices. Finally, we linearly
interpolate the trained CRF model and the label
distributions from the graph:

Xint(t) = αXCRF (t) + (1− α)XGraph(t) (3)

where t is a 3-gram token in a specific sen-
tence, XCRF (t) denotes the posterior probability
from the CRF model for the middle word in t,
XGraph(t) denotes the label distribution of the 3-
gram type t after graph propagationn, and α ∈
[0, 1] is the mixture parameter between the CRF
and graph models. The best label for all words
in the entire corpus is then found using Viterbi-
decoding for the CRF usingXint instead ofXCRF

(viterbi-decode, line 7). Viterbi decoding provides
us with the best label for every n-gram token in the
unlabeled corpus, which implies that our labeled
set has grown to include the unlabeled corpus. We
re-train the CRF on this expanded training set (crf-
train, line 8); and iterate until convergence.

Note that the steps indicated by lines 1, 4, and

Figure 2: Iterative semi-supervised training of
CRF with label distributions from the graph. (Sub-
ramanya et al., 2010).

8 work on the corpus whereas graph propagation
in line 6 works on the graph. So, the step in line 5
takes us from corpus to the graph, and the step in
line 7 takes us back from the graph to the corpus.

2.4 Integration with BANNER

BANNER (Leaman et al., 2008) is a well-known
open-source biomedical named entity recognizer
that is widely used. Many studies have used
BANNER for gene mention tagging (Li et al.,
2015; Hakala et al., 2015; Leaman et al., 2015;
Pyysalo et al., 2015; Li et al., 2015; Lee et al.,
2014; Leaman et al., 2013) and many have cited
it as a biomedical NER system with good perfor-
mance (Dai et al., 2015; Krallinger et al., 2015;
Luo et al., 2016; Gonzalez et al., 2016; Hebbring
et al., 2015).

BANNER uses CRF as its machine learning
core, and we used it as our base CRF in lines 1
and 8 in Figure 2. We also modified BANNER’s
source code in order to extract the posterior proba-

Figure 1: Neighbours of one vertex before and after Propagation. I,O,B stand for Inside-gene, Outside-
gene, Beginning-gene.
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Category Method Precision Recall F-Score
Baseline BANNER 86.27 85.57 84.90

Our methods
Graph-based SSL 88.98 82.95 85.86

Graph + postprocessing 89.36 82.95 86.04

More recent methods
BANNER-ChemDNER (2015) 88.02 86.08 87.04

Gimli (2013) 90.22 84.32 87.17

Best performing methods
(Ando, 2007) 88.48 85.97 87.21

in BioCreative II challenge
(Kuo et al., 2007) 89.3 84.49 86.83

(Huang et al., 2007) 84.93 88.28 86.57

Table 3: Graph-based SSL improves BANNER by increasing the precision.

bilities from the underlying MALLET CRF model
(line 4). These probabilities were used in lines 5
through 7 in Figure 2.

Furthermore, the lemmas we used as features in
our graph construction (see section 2.1) came from
BANNER’s lemmatizer.

BANNER also does some post-processing: it
discards all the mentions that contain unmatched
brackets. We ran our method with and without this
post-processing step and verified its utility in our
approach as well.

3 Experiments

We show improvements over BANNER on the
dataset of BioCreative II Gene Mention Tagging
Task. This data set contains 15,000 training sen-
tences and 5,000 test sentences. Annotations are
given by the starting character index and finishing
character index of the gene in the sentence (space
characters are ignored). Some sentences have al-
ternative annotations presented in a separate file.

The upper part of Table 3 shows the results
of BANNER; Graph-Based SSL without post-
processing; and Graph-Based SSL with post-
processing. The hyper-parameters of Graph-
Based SSL were chosen by cross-validation over
different train/test splits with different hyper-
parameters tested for each split (α = 0.02, µ =
10−6, ν = 10−4, and number of iterations =
2). Table 3 shows that the improvement we get
in F-measure is due to better precision which is
further boosted by dropping the candidates with
unmatched parentheses (which is our only post-
processing step).

The lower part of Table 3 puts our method in
context. Although our method is competitive with
these best performing methods in the literature,
it has not outperformed any of them other than
BANNER. Its precision however, is better than
all other methods with the exception of Gimli. It
would be interesting to integrate the graph-based
approach to the ones with CRF as their machine

Type Of error Number Examples
FN in both

BANNER and Graph
882 SST, R

FP in Graph 120
CD18, kinase, homeobox domain, transforming growth factor -
beta, GRK6, POZ/Zn, HPR, E1B 19

FP in BANNER 337
oxidase, dose Ara C, mouse amino acid sequence, Ann Arbor,
K1F, wild-type R. sphaeroides 2.4.1, SAS GLM, 1.6-kb cDNA,
SH2, E3 ubiquitin, Xp22.3

FN in BANNER 158
LDL, bZIP protein, SL1, NF-kappaB, Ig-like domain,
immunoglobulin genes, signal transducer and activator of
transcription 1, bcr, ACTH, GFR, wnt

FN in Graph 197
SH3A, EGF, VA1, CBP, Decidual/trophoblast prolactin-related
protein, CA 50

Table 4: Qualitative comparison by a human domain expert between BANNER and Graph Propagation.
FN: false negatives. FP: false positives.
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Figure 3: Precision and recall for different
train/test splits and hyper-parameter choices. Each
color represents a single train/test split. We in-
clude only the Pareto optimal points for each split.

learning core (BANNER-ChemdNER, Gimli, and
the approach of (Kuo et al., 2007)) to further test
the utility of the graph approach.

3.1 Qualitative analysis
To understand the differences between BANNER
and the graph propagation results, a human do-
main expert compared the errors occurring in their
respective outputs. Table 4 shows the number of
these errors as well as some examples.

These examples illustrate two important obser-
vations. First, there are examples of categories
more general than genes in both false positives and
false negatives for both systems. For example Ki-
nase is a functional group of proteins; POZ/Zn, Ig-
like domain, and SH2 are protein domains; and E3
ubiquitin and NF-kappaB are gene families. Anec-
dotal evidence suggests that this is due to presence
of similar annotations in the training/test data set.
For example the bZIP protein, a protein family,
and Ig-like domain, a gene/protein functional do-
main were both annotated as genes. This calls for
a better gene mention corpus annotated according
to more recent gene annotation guidelines. Sec-
ond, there are some hard to explain false positives
in BANNER. Examples include Ann Arbor, a city
in Michigan, SAS GLM, a type of statistical test,
and 1.6-kb cDNA, a molecular length. Our graph-
based approach has eliminated these false posi-
tives.

3.2 Cross validation study
We conducted extensive cross-validation experi-
ments using different train and test splits in or-
der to explore the hyper-parameter values and to

Figure 4: The same points as in Figure 3 shown
as the difference from the Banner scores for the
same train/test split. The origin in this graph is the
BANNER score. Each cluster of points in Figure 3
becomes a line in this graph.

detect trends in the values that were optimal for
this task. The results show that graph-propagation
consistently improves results over BANNER.

Figures 3 and 4 were created by running graph-
propagation over different train and test splits
with different hyper-parameter values for each
split. For each train/test split, we show only the
Pareto optimal points (for each choice of hyper-
parameters we include it in the graph only if the
performance is not dominated by another choice in
both recall and precision). Figure 3 illustrates two
points: 1) the precision and recall for the differ-
ent Pareto optimal points for each train/test split is
very similar, and 2) overall the different train/test
splits have similar precision and recall values. Fig-
ure 4 shows the performance for each train/test
split shown as the difference from the BANNER
scores for that split. It shows that the precision
scores of graph-propagation is always better than
the BANNER baseline, while recall is sometimes
worse. The F-scores for all train/test splits and for
all Pareto optimal points in each split is always
better than the BANNER baseline.

We can collect useful statistics about which
hyper-parameter values are the most useful in
graph-propagation in this task from the extensive
set of experiments described above: for different
train/test splits and for each split with different
hyper-parameter values. Figure 5 shows the num-
ber of times different hyper-parameter values have
appeared in the set of Pareto optimal points over
all the train/test splits.

The hyper-parameter α (see equation 3) con-
trols the interpolation between the BANNER pos-
terior probability over labels and the label distri-
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bution from the graph-propagation step. Higher
α values would prefer BANNER over graph-
propagation. Figure 5 shows that smaller α values
are preferred, which implies that the label distribu-
tion produced through graph-propagation is found
to be more useful than the label distribution pro-
duced by BANNER. We also investigated the two
extreme cases of α = 0 (only graph) and α = 1.0
(only BANNER followed by an extra Viterbi de-
coding step), and observed that both of these op-
tions were worse than the BANNER baseline.

In equation (1) higher ν values keep the label
distribution at each vertex of the graph closer to
the uniform distribution. Higher µ values would
allow adjacent vertices to have a greater influence
on the label distribution at the vertex. Figure 5
shows that, in our experiments, graph-propagation
is sensitive to the values of µ. Lower µ values
appear in Pareto optimal points more often. On the
other hand, Figure 5 shows that graph-propagation
is not as sensitive to different values of ν as long as
it is not too high (10−1). This might be due to our
setting, where about 73% of vertices are labelled.

We looked for strong correlations between ν
values, µ values, and number of iterations in graph
propagation and found none.

Finally, for different iteration numbers of graph-
propagation, we collected the frequency with
which each number appeared in the Pareto opti-
mal results. One iteration of graph-propagation
produced 68 Pareto optimal points, two iterations
produced 198 points, and three iterations pro-
duced 120 points in our experiments. This shows
that having more than one iteration of graph-
propagation can improve the results.

Our algorithm (Figure 2) has two levels of itera-
tions. One outer iteration (the while loop) and one

inner iteration in graph propagation. The numbers
mentioned above refer to this inner iteration. All
our results reported are for one outer iteration only.
Our experiments in this paper were in a trans-
ductive setting where the graph was constructed
over the test and training data. For this reason
we did not experiment extensively with more than
one outer iteration. In future work, we plan to
experiment with increasing the amount of unla-
beled data, and in this setting explore increasing
the number of outer iterations.

3.3 A note on scalability

The most time consuming step in our approach
was graph construction, where the bootleneck is
to compute the edge weights between any possi-
ble vertex pairs. We experimented with a naive
algorithm, where for every vertex pair the values
of feature vectors for shared features were consid-
ered, and the cosine similarity was computed. We
also implemented a variation on it, where the sim-
ilarities between all pairs sharing a specific feature
instance were computed, and the contributions of
individual feature instances were summed to give
the final similarity between any given pair. The
first algorithm was too slow as expected due to its
O(|V |2) time complexity; the second one was too
slow due to high frequency features. This is an
important issue since the graph needs to be con-
structed for our approach to work on a new dataset.

Apart from the graph construction, the graph
based approach is as scalable as CRF if a labeled
train set is available for the new domain, as the
CRF only needs to be trained on the new labelled
set. If we wish to adapt the method in a domain
where there is no labelled data in the target do-
main, there is no need for any training.

0	

50	

100	

150	

200	

1.
E-
06
	

1.
E-
05
	

1.
E-
04
	

1.
E-
03
	

1.
E-
02
	

1.
E-
01
	

>1
	

Fr
eq

ue
nc
y	

µ	

0	

50	

100	

150	

200	

1.
E-
06
	

1.
E-
05
	

1.
E-
04
	

1.
E-
03
	

1.
E-
02
	

1.
E-
01
	

>1
	

Fr
eq

ue
nc
y	

ν	

0	

20	

40	

60	

80	

100	

120	

0.
02
	

0.
04
	

0.
06
	

0.
08
	

0.
1	

0.
12
	

0.
14
	

0.
16
	

0.
18
	

0.
2	

0.
22
	

0.
24
	

0.
26
	

0.
28
	

0.
3	

0.
32
	

>0
.3
2	

Fr
eq

ue
nc
y	

α	

Figure 5: These graphs show the number of times specific hyper-parameter values α, µ and ν appeared
in Pareto optimal points over all train/test splits.

.

33



4 Conclusion and future directions

Our results show that propagating labels from 3-
grams present in training set to 3-grams only ap-
pearing in the test set can significantly improve
BANNER, a well-known frequently used biomed-
ical named entity recognition system for the gene
mention tagging task. Our cross-validation study
shows the robustness of this improvement. We
also presented qualitative comparison by a human
domain expert. Our ideas for future work are cat-
egorized into three groups:

1. Adding more unlabelled data: The only un-
labelled data we included in the graph were the test
data. Since the success of semi-supervised learn-
ing methods is usually due to huge amount of un-
labelled data, we plan to use many more PubMed
abstracts to construct the graph. This however will
be challenging because the graph construction can
be time consuming as it was in our case due to high
frequency features.

2. Constructing a better graph: Contextual
features we used to construct our graph are only
one of the feature sets that have been shown use-
ful in gene mention tagging task. Other feature
sets include orthographic features, contextual fea-
tures learnt from neural networks, features from
parse trees. These features may also prove useful
in constructing a graph that represents the simi-
larity between gene mentions. Also, we can pre-
process the raw sentences to collapse some collo-
cations into one word so that the middle word in
the 3-gram vertices are more meaningful.

3. Improving the latest approach: Although
BANNER is one of the most frequently used
biomedical named entity recognition system, it is
not one with the best performance ever. Previous
approaches have improved BANNER in a variety
of ways, including semi-supervised learning. In
particular, Munkhdalia et al. have achieved an F-
measure of 87.04 by including word representa-
tions learnt from massive unlabelled data as fea-
tures (Munkhdalai et al., 2015) . We plan to test
our approach on their freely available system.
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2013. Gimli: open source and high-performance
biomedical name recognition. BMC bioinformatics,
14(1):54.

Hong-Jie Dai, Po-Ting Lai, Yung-Chun Chang, and
Richard Tzong-Han Tsai. 2015. Enhancing of
chemical compound and drug name recognition us-
ing representative tag scheme and fine-grained tok-
enization. Journal of cheminformatics, 7(S1):1–10.

Dipanjan Das and Slav Petrov. 2011. Unsupervised
part-of-speech tagging with bilingual graph-based
projections. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1,
pages 600–609. Association for Computational Lin-
guistics.

Graciela H Gonzalez, Tasnia Tahsin, Britton C
Goodale, Anna C Greene, and Casey S Greene.
2016. Recent advances and emerging applications
in text and data mining for biomedical discovery.
Briefings in bioinformatics, 17(1):33–42.

Kai Hakala, Sofie Van Landeghem, Tapio Salakoski,
Yves Van de Peer, and Filip Ginter. 2015. Appli-
cation of the evex resource to event extraction and
network construction: Shared task entry and result
analysis. BMC bioinformatics, 16(Suppl 16):S3.

Scott J Hebbring, Majid Rastegar-Mojarad, Zhan Ye,
John Mayer, Crystal Jacobson, and Simon Lin.
2015. Application of clinical text data for phenome-
wide association studies (PheWASs). Bioinformat-
ics, 31(12):1981–1987.

Han-Shen Huang, Yu-Shi Lin, Kuan-Ting Lin, Cheng-
Ju Kuo, Yu-Ming Chang, Bo-Hou Yang, I-Fang
Chung, and Chun-Nan Hsu. 2007. High-recall
gene mention recognition by unification of multi-
ple backward parsing models. In Proceedings of the

34



second BioCreative challenge evaluation workshop,
volume 23, pages 109–111. Centro Nacional de In-
vestigaciones Oncologicas (CNIO) Madrid, Spain.

Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell
Greiner, and Dale Schuurmans. 2006. Semi-
supervised conditional random fields for improved
sequence segmentation and labeling. In Proceed-
ings of the 21st International Conference on Com-
putational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics,
pages 209–216. Association for Computational Lin-
guistics.

Martin Krallinger, Obdulia Rabal, Florian Leitner,
Miguel Vazquez, David Salgado, Zhiyong Lu,
Robert Leaman, Yanan Lu, Donghong Ji, Daniel M
Lowe, et al. 2015. The chemdner corpus of chemi-
cals and drugs and its annotation principles. Journal
of cheminformatics, 7(S1):1–17.

Cheng-Ju Kuo, Yu-Ming Chang, Han-Shen Huang,
Kuan-Ting Lin, Bo-Hou Yang, Yu-Shi Lin, Chun-
Nan Hsu, and I-Fang Chung. 2007. Rich fea-
ture set, unification of bidirectional parsing and dic-
tionary filtering for high f-score gene mention tag-
ging. In Proceedings of the second BioCreative
challenge evaluation workshop, volume 23, pages
105–107. Centro Nacional de Investigaciones Onco-
logicas (CNIO) Madrid, Spain.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In ICML.

Robert Leaman, Graciela Gonzalez, et al. 2008. Ban-
ner: an executable survey of advances in biomedical
named entity recognition. In Pacific Symposium on
Biocomputing, volume 13, pages 652–663. Citeseer.

Robert Leaman, Rezarta Islamaj Doğan, and Zhiy-
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Paşca, Deepak Ravichandran, Rahul Bhagat, and
Fernando Pereira. 2008. Weakly-supervised acqui-
sition of labeled class instances using graph random
walks. In EMNLP 2008.

Akihiro Tamura, Taro Watanabe, and Eiichiro Sumita.
2012. Bilingual lexicon extraction from comparable
corpora using label propagation. In EMNLP-CoNLL
2012.

Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al.
2003. Semi-supervised learning using gaussian
fields and harmonic functions. In ICML, volume 3,
pages 912–919.

35


