@inproceedings{shi-etal-2016-real,
title = "Real Multi-Sense or Pseudo Multi-Sense: An Approach to Improve Word Representation",
author = "Shi, Haoyue and
Li, Caihua and
Hu, Junfeng",
editor = "Brunato, Dominique and
Dell{'}Orletta, Felice and
Venturi, Giulia and
Fran{\c{c}}ois, Thomas and
Blache, Philippe",
booktitle = "Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity ({CL}4{LC})",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4109",
pages = "79--88",
abstract = "Previous researches have shown that learning multiple representations for polysemous words can improve the performance of word embeddings on many tasks. However, this leads to another problem. Several vectors of a word may actually point to the same meaning, namely pseudo multi-sense. In this paper, we introduce the concept of pseudo multi-sense, and then propose an algorithm to detect such cases. With the consideration of the detected pseudo multi-sense cases, we try to refine the existing word embeddings to eliminate the influence of pseudo multi-sense. Moreover, we apply our algorithm on previous released multi-sense word embeddings and tested it on artificial word similarity tasks and the analogy task. The result of the experiments shows that diminishing pseudo multi-sense can improve the quality of word representations. Thus, our method is actually an efficient way to reduce linguistic complexity.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shi-etal-2016-real">
<titleInfo>
<title>Real Multi-Sense or Pseudo Multi-Sense: An Approach to Improve Word Representation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haoyue</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caihua</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junfeng</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity (CL4LC)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dominique</namePart>
<namePart type="family">Brunato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giulia</namePart>
<namePart type="family">Venturi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">François</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous researches have shown that learning multiple representations for polysemous words can improve the performance of word embeddings on many tasks. However, this leads to another problem. Several vectors of a word may actually point to the same meaning, namely pseudo multi-sense. In this paper, we introduce the concept of pseudo multi-sense, and then propose an algorithm to detect such cases. With the consideration of the detected pseudo multi-sense cases, we try to refine the existing word embeddings to eliminate the influence of pseudo multi-sense. Moreover, we apply our algorithm on previous released multi-sense word embeddings and tested it on artificial word similarity tasks and the analogy task. The result of the experiments shows that diminishing pseudo multi-sense can improve the quality of word representations. Thus, our method is actually an efficient way to reduce linguistic complexity.</abstract>
<identifier type="citekey">shi-etal-2016-real</identifier>
<location>
<url>https://aclanthology.org/W16-4109</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>79</start>
<end>88</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Real Multi-Sense or Pseudo Multi-Sense: An Approach to Improve Word Representation
%A Shi, Haoyue
%A Li, Caihua
%A Hu, Junfeng
%Y Brunato, Dominique
%Y Dell’Orletta, Felice
%Y Venturi, Giulia
%Y François, Thomas
%Y Blache, Philippe
%S Proceedings of the Workshop on Computational Linguistics for Linguistic Complexity (CL4LC)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F shi-etal-2016-real
%X Previous researches have shown that learning multiple representations for polysemous words can improve the performance of word embeddings on many tasks. However, this leads to another problem. Several vectors of a word may actually point to the same meaning, namely pseudo multi-sense. In this paper, we introduce the concept of pseudo multi-sense, and then propose an algorithm to detect such cases. With the consideration of the detected pseudo multi-sense cases, we try to refine the existing word embeddings to eliminate the influence of pseudo multi-sense. Moreover, we apply our algorithm on previous released multi-sense word embeddings and tested it on artificial word similarity tasks and the analogy task. The result of the experiments shows that diminishing pseudo multi-sense can improve the quality of word representations. Thus, our method is actually an efficient way to reduce linguistic complexity.
%U https://aclanthology.org/W16-4109
%P 79-88
Markdown (Informal)
[Real Multi-Sense or Pseudo Multi-Sense: An Approach to Improve Word Representation](https://aclanthology.org/W16-4109) (Shi et al., CL4LC 2016)
ACL