@inproceedings{sahoo-etal-2016-semi,
title = "Semi-supervised Clustering of Medical Text",
author = "Sahoo, Pracheta and
Ekbal, Asif and
Saha, Sriparna and
Moll{\'a}, Diego and
Nandan, Kaushik",
editor = "Rumshisky, Anna and
Roberts, Kirk and
Bethard, Steven and
Naumann, Tristan",
booktitle = "Proceedings of the Clinical Natural Language Processing Workshop ({C}linical{NLP})",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4205/",
pages = "23--31",
abstract = "Semi-supervised clustering is an attractive alternative for traditional (unsupervised) clustering in targeted applications. By using the information of a small annotated dataset, semi-supervised clustering can produce clusters that are customized to the application domain. In this paper, we present a semi-supervised clustering technique based on a multi-objective evolutionary algorithm (NSGA-II-clus). We apply this technique to the task of clustering medical publications for Evidence Based Medicine (EBM) and observe an improvement of the results against unsupervised and other semi-supervised clustering techniques."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sahoo-etal-2016-semi">
<titleInfo>
<title>Semi-supervised Clustering of Medical Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pracheta</namePart>
<namePart type="family">Sahoo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sriparna</namePart>
<namePart type="family">Saha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diego</namePart>
<namePart type="family">Mollá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaushik</namePart>
<namePart type="family">Nandan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Clinical Natural Language Processing Workshop (ClinicalNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tristan</namePart>
<namePart type="family">Naumann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Semi-supervised clustering is an attractive alternative for traditional (unsupervised) clustering in targeted applications. By using the information of a small annotated dataset, semi-supervised clustering can produce clusters that are customized to the application domain. In this paper, we present a semi-supervised clustering technique based on a multi-objective evolutionary algorithm (NSGA-II-clus). We apply this technique to the task of clustering medical publications for Evidence Based Medicine (EBM) and observe an improvement of the results against unsupervised and other semi-supervised clustering techniques.</abstract>
<identifier type="citekey">sahoo-etal-2016-semi</identifier>
<location>
<url>https://aclanthology.org/W16-4205/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>23</start>
<end>31</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semi-supervised Clustering of Medical Text
%A Sahoo, Pracheta
%A Ekbal, Asif
%A Saha, Sriparna
%A Mollá, Diego
%A Nandan, Kaushik
%Y Rumshisky, Anna
%Y Roberts, Kirk
%Y Bethard, Steven
%Y Naumann, Tristan
%S Proceedings of the Clinical Natural Language Processing Workshop (ClinicalNLP)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F sahoo-etal-2016-semi
%X Semi-supervised clustering is an attractive alternative for traditional (unsupervised) clustering in targeted applications. By using the information of a small annotated dataset, semi-supervised clustering can produce clusters that are customized to the application domain. In this paper, we present a semi-supervised clustering technique based on a multi-objective evolutionary algorithm (NSGA-II-clus). We apply this technique to the task of clustering medical publications for Evidence Based Medicine (EBM) and observe an improvement of the results against unsupervised and other semi-supervised clustering techniques.
%U https://aclanthology.org/W16-4205/
%P 23-31
Markdown (Informal)
[Semi-supervised Clustering of Medical Text](https://aclanthology.org/W16-4205/) (Sahoo et al., ClinicalNLP 2016)
ACL
- Pracheta Sahoo, Asif Ekbal, Sriparna Saha, Diego Mollá, and Kaushik Nandan. 2016. Semi-supervised Clustering of Medical Text. In Proceedings of the Clinical Natural Language Processing Workshop (ClinicalNLP), pages 23–31, Osaka, Japan. The COLING 2016 Organizing Committee.