@inproceedings{summa-etal-2016-microblog,
title = "Microblog Emotion Classification by Computing Similarity in Text, Time, and Space",
author = "Summa, Anja and
Resch, Bernd and
Strube, Michael",
editor = "Nissim, Malvina and
Patti, Viviana and
Plank, Barbara",
booktitle = "Proceedings of the Workshop on Computational Modeling of People{'}s Opinions, Personality, and Emotions in Social Media ({PEOPLES})",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4317",
pages = "153--162",
abstract = "Most work in NLP analysing microblogs focuses on textual content thus neglecting temporal and spatial information. We present a new interdisciplinary method for emotion classification that combines linguistic, temporal, and spatial information into a single metric. We create a graph of labeled and unlabeled tweets that encodes the relations between neighboring tweets with respect to their emotion labels. Graph-based semi-supervised learning labels all tweets with an emotion.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="summa-etal-2016-microblog">
<titleInfo>
<title>Microblog Emotion Classification by Computing Similarity in Text, Time, and Space</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anja</namePart>
<namePart type="family">Summa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernd</namePart>
<namePart type="family">Resch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Strube</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media (PEOPLES)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Malvina</namePart>
<namePart type="family">Nissim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Viviana</namePart>
<namePart type="family">Patti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most work in NLP analysing microblogs focuses on textual content thus neglecting temporal and spatial information. We present a new interdisciplinary method for emotion classification that combines linguistic, temporal, and spatial information into a single metric. We create a graph of labeled and unlabeled tweets that encodes the relations between neighboring tweets with respect to their emotion labels. Graph-based semi-supervised learning labels all tweets with an emotion.</abstract>
<identifier type="citekey">summa-etal-2016-microblog</identifier>
<location>
<url>https://aclanthology.org/W16-4317</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>153</start>
<end>162</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Microblog Emotion Classification by Computing Similarity in Text, Time, and Space
%A Summa, Anja
%A Resch, Bernd
%A Strube, Michael
%Y Nissim, Malvina
%Y Patti, Viviana
%Y Plank, Barbara
%S Proceedings of the Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media (PEOPLES)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F summa-etal-2016-microblog
%X Most work in NLP analysing microblogs focuses on textual content thus neglecting temporal and spatial information. We present a new interdisciplinary method for emotion classification that combines linguistic, temporal, and spatial information into a single metric. We create a graph of labeled and unlabeled tweets that encodes the relations between neighboring tweets with respect to their emotion labels. Graph-based semi-supervised learning labels all tweets with an emotion.
%U https://aclanthology.org/W16-4317
%P 153-162
Markdown (Informal)
[Microblog Emotion Classification by Computing Similarity in Text, Time, and Space](https://aclanthology.org/W16-4317) (Summa et al., PEOPLES 2016)
ACL