@inproceedings{neubig-2016-lexicons,
title = "Lexicons and Minimum Risk Training for Neural Machine Translation: {NAIST}-{CMU} at {WAT}2016",
author = "Neubig, Graham",
editor = "Nakazawa, Toshiaki and
Mino, Hideya and
Ding, Chenchen and
Goto, Isao and
Neubig, Graham and
Kurohashi, Sadao and
Riza, Ir. Hammam and
Bhattacharyya, Pushpak",
booktitle = "Proceedings of the 3rd Workshop on {A}sian Translation ({WAT}2016)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4610/",
pages = "119--125",
abstract = "This year, the Nara Institute of Science and Technology (NAIST)/Carnegie Mellon University (CMU) submission to the Japanese-English translation track of the 2016 Workshop on Asian Translation was based on attentional neural machine translation (NMT) models. In addition to the standard NMT model, we make a number of improvements, most notably the use of discrete translation lexicons to improve probability estimates, and the use of minimum risk training to optimize the MT system for BLEU score. As a result, our system achieved the highest translation evaluation scores for the task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="neubig-2016-lexicons">
<titleInfo>
<title>Lexicons and Minimum Risk Training for Neural Machine Translation: NAIST-CMU at WAT2016</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Asian Translation (WAT2016)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Toshiaki</namePart>
<namePart type="family">Nakazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hideya</namePart>
<namePart type="family">Mino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenchen</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isao</namePart>
<namePart type="family">Goto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ir.</namePart>
<namePart type="given">Hammam</namePart>
<namePart type="family">Riza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This year, the Nara Institute of Science and Technology (NAIST)/Carnegie Mellon University (CMU) submission to the Japanese-English translation track of the 2016 Workshop on Asian Translation was based on attentional neural machine translation (NMT) models. In addition to the standard NMT model, we make a number of improvements, most notably the use of discrete translation lexicons to improve probability estimates, and the use of minimum risk training to optimize the MT system for BLEU score. As a result, our system achieved the highest translation evaluation scores for the task.</abstract>
<identifier type="citekey">neubig-2016-lexicons</identifier>
<location>
<url>https://aclanthology.org/W16-4610/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>119</start>
<end>125</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Lexicons and Minimum Risk Training for Neural Machine Translation: NAIST-CMU at WAT2016
%A Neubig, Graham
%Y Nakazawa, Toshiaki
%Y Mino, Hideya
%Y Ding, Chenchen
%Y Goto, Isao
%Y Neubig, Graham
%Y Kurohashi, Sadao
%Y Riza, Ir. Hammam
%Y Bhattacharyya, Pushpak
%S Proceedings of the 3rd Workshop on Asian Translation (WAT2016)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F neubig-2016-lexicons
%X This year, the Nara Institute of Science and Technology (NAIST)/Carnegie Mellon University (CMU) submission to the Japanese-English translation track of the 2016 Workshop on Asian Translation was based on attentional neural machine translation (NMT) models. In addition to the standard NMT model, we make a number of improvements, most notably the use of discrete translation lexicons to improve probability estimates, and the use of minimum risk training to optimize the MT system for BLEU score. As a result, our system achieved the highest translation evaluation scores for the task.
%U https://aclanthology.org/W16-4610/
%P 119-125
Markdown (Informal)
[Lexicons and Minimum Risk Training for Neural Machine Translation: NAIST-CMU at WAT2016](https://aclanthology.org/W16-4610/) (Neubig, WAT 2016)
ACL