@inproceedings{roesiger-etal-2016-acquisition,
title = "Acquisition of semantic relations between terms: how far can we get with standard {NLP} tools?",
author = {Roesiger, Ina and
Bettinger, Julia and
Sch{\"a}fer, Johannes and
Dorna, Michael and
Heid, Ulrich},
editor = "Drouin, Patrick and
Grabar, Natalia and
Hamon, Thierry and
Kageura, Kyo and
Takeuchi, Koichi",
booktitle = "Proceedings of the 5th International Workshop on Computational Terminology (Computerm2016)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4706/",
pages = "41--51",
abstract = "The extraction of data exemplifying relations between terms can make use, at least to a large extent, of techniques that are similar to those used in standard hybrid term candidate extraction, namely basic corpus analysis tools (e.g. tagging, lemmatization, parsing), as well as morphological analysis of complex words (compounds and derived items). In this article, we discuss the use of such techniques for the extraction of raw material for a description of relations between terms, and we provide internal evaluation data for the devices developed. We claim that user-generated content is a rich source of term variation through paraphrasing and reformulation, and that these provide relational data at the same time as term variants. Germanic languages with their rich word formation morphology may be particularly good candidates for the approach advocated here."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="roesiger-etal-2016-acquisition">
<titleInfo>
<title>Acquisition of semantic relations between terms: how far can we get with standard NLP tools?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ina</namePart>
<namePart type="family">Roesiger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Bettinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Schäfer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Dorna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ulrich</namePart>
<namePart type="family">Heid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th International Workshop on Computational Terminology (Computerm2016)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Drouin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Grabar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Hamon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyo</namePart>
<namePart type="family">Kageura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichi</namePart>
<namePart type="family">Takeuchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The extraction of data exemplifying relations between terms can make use, at least to a large extent, of techniques that are similar to those used in standard hybrid term candidate extraction, namely basic corpus analysis tools (e.g. tagging, lemmatization, parsing), as well as morphological analysis of complex words (compounds and derived items). In this article, we discuss the use of such techniques for the extraction of raw material for a description of relations between terms, and we provide internal evaluation data for the devices developed. We claim that user-generated content is a rich source of term variation through paraphrasing and reformulation, and that these provide relational data at the same time as term variants. Germanic languages with their rich word formation morphology may be particularly good candidates for the approach advocated here.</abstract>
<identifier type="citekey">roesiger-etal-2016-acquisition</identifier>
<location>
<url>https://aclanthology.org/W16-4706/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>41</start>
<end>51</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Acquisition of semantic relations between terms: how far can we get with standard NLP tools?
%A Roesiger, Ina
%A Bettinger, Julia
%A Schäfer, Johannes
%A Dorna, Michael
%A Heid, Ulrich
%Y Drouin, Patrick
%Y Grabar, Natalia
%Y Hamon, Thierry
%Y Kageura, Kyo
%Y Takeuchi, Koichi
%S Proceedings of the 5th International Workshop on Computational Terminology (Computerm2016)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F roesiger-etal-2016-acquisition
%X The extraction of data exemplifying relations between terms can make use, at least to a large extent, of techniques that are similar to those used in standard hybrid term candidate extraction, namely basic corpus analysis tools (e.g. tagging, lemmatization, parsing), as well as morphological analysis of complex words (compounds and derived items). In this article, we discuss the use of such techniques for the extraction of raw material for a description of relations between terms, and we provide internal evaluation data for the devices developed. We claim that user-generated content is a rich source of term variation through paraphrasing and reformulation, and that these provide relational data at the same time as term variants. Germanic languages with their rich word formation morphology may be particularly good candidates for the approach advocated here.
%U https://aclanthology.org/W16-4706/
%P 41-51
Markdown (Informal)
[Acquisition of semantic relations between terms: how far can we get with standard NLP tools?](https://aclanthology.org/W16-4706/) (Roesiger et al., CompuTerm 2016)
ACL