@inproceedings{popovic-etal-2016-enlarging,
title = "Enlarging Scarce In-domain {E}nglish-{C}roatian Corpus for {SMT} of {MOOC}s Using {S}erbian",
author = "Popovi{\'c}, Maja and
Cholakov, Kostadin and
Kordoni, Valia and
Ljube{\v{s}}i{\'c}, Nikola",
editor = {Nakov, Preslav and
Zampieri, Marcos and
Tan, Liling and
Ljube{\v{s}}i{\'c}, Nikola and
Tiedemann, J{\"o}rg and
Malmasi, Shervin},
booktitle = "Proceedings of the Third Workshop on {NLP} for Similar Languages, Varieties and Dialects ({V}ar{D}ial3)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4813",
pages = "97--105",
abstract = "Massive Open Online Courses have been growing rapidly in size and impact. Yet the language barrier constitutes a major growth impediment in reaching out all people and educating all citizens. A vast majority of educational material is available only in English, and state-of-the-art machine translation systems still have not been tailored for this peculiar genre. In addition, a mere collection of appropriate in-domain training material is a challenging task. In this work, we investigate statistical machine translation of lecture subtitles from English into Croatian, which is morphologically rich and generally weakly supported, especially for the educational domain. We show that results comparable with publicly available systems trained on much larger data can be achieved if a small in-domain training set is used in combination with additional in-domain corpus originating from the closely related Serbian language.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="popovic-etal-2016-enlarging">
<titleInfo>
<title>Enlarging Scarce In-domain English-Croatian Corpus for SMT of MOOCs Using Serbian</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maja</namePart>
<namePart type="family">Popović</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kostadin</namePart>
<namePart type="family">Cholakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valia</namePart>
<namePart type="family">Kordoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liling</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Massive Open Online Courses have been growing rapidly in size and impact. Yet the language barrier constitutes a major growth impediment in reaching out all people and educating all citizens. A vast majority of educational material is available only in English, and state-of-the-art machine translation systems still have not been tailored for this peculiar genre. In addition, a mere collection of appropriate in-domain training material is a challenging task. In this work, we investigate statistical machine translation of lecture subtitles from English into Croatian, which is morphologically rich and generally weakly supported, especially for the educational domain. We show that results comparable with publicly available systems trained on much larger data can be achieved if a small in-domain training set is used in combination with additional in-domain corpus originating from the closely related Serbian language.</abstract>
<identifier type="citekey">popovic-etal-2016-enlarging</identifier>
<location>
<url>https://aclanthology.org/W16-4813</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>97</start>
<end>105</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enlarging Scarce In-domain English-Croatian Corpus for SMT of MOOCs Using Serbian
%A Popović, Maja
%A Cholakov, Kostadin
%A Kordoni, Valia
%A Ljubešić, Nikola
%Y Nakov, Preslav
%Y Zampieri, Marcos
%Y Tan, Liling
%Y Ljubešić, Nikola
%Y Tiedemann, Jörg
%Y Malmasi, Shervin
%S Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F popovic-etal-2016-enlarging
%X Massive Open Online Courses have been growing rapidly in size and impact. Yet the language barrier constitutes a major growth impediment in reaching out all people and educating all citizens. A vast majority of educational material is available only in English, and state-of-the-art machine translation systems still have not been tailored for this peculiar genre. In addition, a mere collection of appropriate in-domain training material is a challenging task. In this work, we investigate statistical machine translation of lecture subtitles from English into Croatian, which is morphologically rich and generally weakly supported, especially for the educational domain. We show that results comparable with publicly available systems trained on much larger data can be achieved if a small in-domain training set is used in combination with additional in-domain corpus originating from the closely related Serbian language.
%U https://aclanthology.org/W16-4813
%P 97-105
Markdown (Informal)
[Enlarging Scarce In-domain English-Croatian Corpus for SMT of MOOCs Using Serbian](https://aclanthology.org/W16-4813) (Popović et al., VarDial 2016)
ACL