@inproceedings{bjerva-2016-byte,
title = "Byte-based Language Identification with Deep Convolutional Networks",
author = "Bjerva, Johannes",
editor = {Nakov, Preslav and
Zampieri, Marcos and
Tan, Liling and
Ljube{\v{s}}i{\'c}, Nikola and
Tiedemann, J{\"o}rg and
Malmasi, Shervin},
booktitle = "Proceedings of the Third Workshop on {NLP} for Similar Languages, Varieties and Dialects ({V}ar{D}ial3)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4816/",
pages = "119--125",
abstract = "We report on our system for the shared task on discriminating between similar languages (DSL 2016). The system uses only byte representations in a deep residual network (ResNet). The system, named ResIdent, is trained only on the data released with the task (closed training). We obtain 84.88{\%} accuracy on subtask A, 68.80{\%} accuracy on subtask B1, and 69.80{\%} accuracy on subtask B2. A large difference in accuracy on development data can be observed with relatively minor changes in our network`s architecture and hyperparameters. We therefore expect fine-tuning of these parameters to yield higher accuracies."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bjerva-2016-byte">
<titleInfo>
<title>Byte-based Language Identification with Deep Convolutional Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Bjerva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liling</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We report on our system for the shared task on discriminating between similar languages (DSL 2016). The system uses only byte representations in a deep residual network (ResNet). The system, named ResIdent, is trained only on the data released with the task (closed training). We obtain 84.88% accuracy on subtask A, 68.80% accuracy on subtask B1, and 69.80% accuracy on subtask B2. A large difference in accuracy on development data can be observed with relatively minor changes in our network‘s architecture and hyperparameters. We therefore expect fine-tuning of these parameters to yield higher accuracies.</abstract>
<identifier type="citekey">bjerva-2016-byte</identifier>
<location>
<url>https://aclanthology.org/W16-4816/</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>119</start>
<end>125</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Byte-based Language Identification with Deep Convolutional Networks
%A Bjerva, Johannes
%Y Nakov, Preslav
%Y Zampieri, Marcos
%Y Tan, Liling
%Y Ljubešić, Nikola
%Y Tiedemann, Jörg
%Y Malmasi, Shervin
%S Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F bjerva-2016-byte
%X We report on our system for the shared task on discriminating between similar languages (DSL 2016). The system uses only byte representations in a deep residual network (ResNet). The system, named ResIdent, is trained only on the data released with the task (closed training). We obtain 84.88% accuracy on subtask A, 68.80% accuracy on subtask B1, and 69.80% accuracy on subtask B2. A large difference in accuracy on development data can be observed with relatively minor changes in our network‘s architecture and hyperparameters. We therefore expect fine-tuning of these parameters to yield higher accuracies.
%U https://aclanthology.org/W16-4816/
%P 119-125
Markdown (Informal)
[Byte-based Language Identification with Deep Convolutional Networks](https://aclanthology.org/W16-4816/) (Bjerva, VarDial 2016)
ACL