@inproceedings{bjerva-2016-byte,
    title = "Byte-based Language Identification with Deep Convolutional Networks",
    author = "Bjerva, Johannes",
    editor = {Nakov, Preslav  and
      Zampieri, Marcos  and
      Tan, Liling  and
      Ljube{\v{s}}i{\'c}, Nikola  and
      Tiedemann, J{\"o}rg  and
      Malmasi, Shervin},
    booktitle = "Proceedings of the Third Workshop on {NLP} for Similar Languages, Varieties and Dialects ({V}ar{D}ial3)",
    month = dec,
    year = "2016",
    address = "Osaka, Japan",
    publisher = "The COLING 2016 Organizing Committee",
    url = "https://aclanthology.org/W16-4816/",
    pages = "119--125",
    abstract = "We report on our system for the shared task on discriminating between similar languages (DSL 2016). The system uses only byte representations in a deep residual network (ResNet). The system, named ResIdent, is trained only on the data released with the task (closed training). We obtain 84.88{\%} accuracy on subtask A, 68.80{\%} accuracy on subtask B1, and 69.80{\%} accuracy on subtask B2. A large difference in accuracy on development data can be observed with relatively minor changes in our network{'}s architecture and hyperparameters. We therefore expect fine-tuning of these parameters to yield higher accuracies."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bjerva-2016-byte">
    <titleInfo>
        <title>Byte-based Language Identification with Deep Convolutional Networks</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Johannes</namePart>
        <namePart type="family">Bjerva</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2016-12</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Preslav</namePart>
            <namePart type="family">Nakov</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marcos</namePart>
            <namePart type="family">Zampieri</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Liling</namePart>
            <namePart type="family">Tan</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Nikola</namePart>
            <namePart type="family">Ljubešić</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jörg</namePart>
            <namePart type="family">Tiedemann</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Shervin</namePart>
            <namePart type="family">Malmasi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>The COLING 2016 Organizing Committee</publisher>
            <place>
                <placeTerm type="text">Osaka, Japan</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We report on our system for the shared task on discriminating between similar languages (DSL 2016). The system uses only byte representations in a deep residual network (ResNet). The system, named ResIdent, is trained only on the data released with the task (closed training). We obtain 84.88% accuracy on subtask A, 68.80% accuracy on subtask B1, and 69.80% accuracy on subtask B2. A large difference in accuracy on development data can be observed with relatively minor changes in our network’s architecture and hyperparameters. We therefore expect fine-tuning of these parameters to yield higher accuracies.</abstract>
    <identifier type="citekey">bjerva-2016-byte</identifier>
    <location>
        <url>https://aclanthology.org/W16-4816/</url>
    </location>
    <part>
        <date>2016-12</date>
        <extent unit="page">
            <start>119</start>
            <end>125</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Byte-based Language Identification with Deep Convolutional Networks
%A Bjerva, Johannes
%Y Nakov, Preslav
%Y Zampieri, Marcos
%Y Tan, Liling
%Y Ljubešić, Nikola
%Y Tiedemann, Jörg
%Y Malmasi, Shervin
%S Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F bjerva-2016-byte
%X We report on our system for the shared task on discriminating between similar languages (DSL 2016). The system uses only byte representations in a deep residual network (ResNet). The system, named ResIdent, is trained only on the data released with the task (closed training). We obtain 84.88% accuracy on subtask A, 68.80% accuracy on subtask B1, and 69.80% accuracy on subtask B2. A large difference in accuracy on development data can be observed with relatively minor changes in our network’s architecture and hyperparameters. We therefore expect fine-tuning of these parameters to yield higher accuracies.
%U https://aclanthology.org/W16-4816/
%P 119-125
Markdown (Informal)
[Byte-based Language Identification with Deep Convolutional Networks](https://aclanthology.org/W16-4816/) (Bjerva, VarDial 2016)
ACL