@inproceedings{eldesouki-etal-2016-qcri,
    title = "{QCRI} @ {DSL} 2016: Spoken {A}rabic Dialect Identification Using Textual Features",
    author = "Eldesouki, Mohamed  and
      Dalvi, Fahim  and
      Sajjad, Hassan  and
      Darwish, Kareem",
    editor = {Nakov, Preslav  and
      Zampieri, Marcos  and
      Tan, Liling  and
      Ljube{\v{s}}i{\'c}, Nikola  and
      Tiedemann, J{\"o}rg  and
      Malmasi, Shervin},
    booktitle = "Proceedings of the Third Workshop on {NLP} for Similar Languages, Varieties and Dialects ({V}ar{D}ial3)",
    month = dec,
    year = "2016",
    address = "Osaka, Japan",
    publisher = "The COLING 2016 Organizing Committee",
    url = "https://aclanthology.org/W16-4828/",
    pages = "221--226",
    abstract = "The paper describes the QCRI submissions to the task of automatic Arabic dialect classification into 5 Arabic variants, namely Egyptian, Gulf, Levantine, North-African, and Modern Standard Arabic (MSA). The training data is relatively small and is automatically generated from an ASR system. To avoid over-fitting on such small data, we carefully selected and designed the features to capture the morphological essence of the different dialects. We submitted four runs to the Arabic sub-task. For all runs, we used a combined feature vector of character bi-grams, tri-grams, 4-grams, and 5-grams. We tried several machine-learning algorithms, namely Logistic Regression, Naive Bayes, Neural Networks, and Support Vector Machines (SVM) with linear and string kernels. However, our submitted runs used SVM with a linear kernel. In the closed submission, we got the best accuracy of 0.5136 and the third best weighted F1 score, with a difference less than 0.002 from the highest score."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="eldesouki-etal-2016-qcri">
    <titleInfo>
        <title>QCRI @ DSL 2016: Spoken Arabic Dialect Identification Using Textual Features</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Mohamed</namePart>
        <namePart type="family">Eldesouki</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Fahim</namePart>
        <namePart type="family">Dalvi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hassan</namePart>
        <namePart type="family">Sajjad</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Kareem</namePart>
        <namePart type="family">Darwish</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2016-12</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Preslav</namePart>
            <namePart type="family">Nakov</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marcos</namePart>
            <namePart type="family">Zampieri</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Liling</namePart>
            <namePart type="family">Tan</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Nikola</namePart>
            <namePart type="family">Ljubešić</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jörg</namePart>
            <namePart type="family">Tiedemann</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Shervin</namePart>
            <namePart type="family">Malmasi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>The COLING 2016 Organizing Committee</publisher>
            <place>
                <placeTerm type="text">Osaka, Japan</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>The paper describes the QCRI submissions to the task of automatic Arabic dialect classification into 5 Arabic variants, namely Egyptian, Gulf, Levantine, North-African, and Modern Standard Arabic (MSA). The training data is relatively small and is automatically generated from an ASR system. To avoid over-fitting on such small data, we carefully selected and designed the features to capture the morphological essence of the different dialects. We submitted four runs to the Arabic sub-task. For all runs, we used a combined feature vector of character bi-grams, tri-grams, 4-grams, and 5-grams. We tried several machine-learning algorithms, namely Logistic Regression, Naive Bayes, Neural Networks, and Support Vector Machines (SVM) with linear and string kernels. However, our submitted runs used SVM with a linear kernel. In the closed submission, we got the best accuracy of 0.5136 and the third best weighted F1 score, with a difference less than 0.002 from the highest score.</abstract>
    <identifier type="citekey">eldesouki-etal-2016-qcri</identifier>
    <location>
        <url>https://aclanthology.org/W16-4828/</url>
    </location>
    <part>
        <date>2016-12</date>
        <extent unit="page">
            <start>221</start>
            <end>226</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T QCRI @ DSL 2016: Spoken Arabic Dialect Identification Using Textual Features
%A Eldesouki, Mohamed
%A Dalvi, Fahim
%A Sajjad, Hassan
%A Darwish, Kareem
%Y Nakov, Preslav
%Y Zampieri, Marcos
%Y Tan, Liling
%Y Ljubešić, Nikola
%Y Tiedemann, Jörg
%Y Malmasi, Shervin
%S Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F eldesouki-etal-2016-qcri
%X The paper describes the QCRI submissions to the task of automatic Arabic dialect classification into 5 Arabic variants, namely Egyptian, Gulf, Levantine, North-African, and Modern Standard Arabic (MSA). The training data is relatively small and is automatically generated from an ASR system. To avoid over-fitting on such small data, we carefully selected and designed the features to capture the morphological essence of the different dialects. We submitted four runs to the Arabic sub-task. For all runs, we used a combined feature vector of character bi-grams, tri-grams, 4-grams, and 5-grams. We tried several machine-learning algorithms, namely Logistic Regression, Naive Bayes, Neural Networks, and Support Vector Machines (SVM) with linear and string kernels. However, our submitted runs used SVM with a linear kernel. In the closed submission, we got the best accuracy of 0.5136 and the third best weighted F1 score, with a difference less than 0.002 from the highest score.
%U https://aclanthology.org/W16-4828/
%P 221-226
Markdown (Informal)
[QCRI @ DSL 2016: Spoken Arabic Dialect Identification Using Textual Features](https://aclanthology.org/W16-4828/) (Eldesouki et al., VarDial 2016)
ACL