@inproceedings{eldesouki-etal-2016-qcri,
title = "{QCRI} @ {DSL} 2016: Spoken {A}rabic Dialect Identification Using Textual Features",
author = "Eldesouki, Mohamed and
Dalvi, Fahim and
Sajjad, Hassan and
Darwish, Kareem",
editor = {Nakov, Preslav and
Zampieri, Marcos and
Tan, Liling and
Ljube{\v{s}}i{\'c}, Nikola and
Tiedemann, J{\"o}rg and
Malmasi, Shervin},
booktitle = "Proceedings of the Third Workshop on {NLP} for Similar Languages, Varieties and Dialects ({V}ar{D}ial3)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4828",
pages = "221--226",
abstract = "The paper describes the QCRI submissions to the task of automatic Arabic dialect classification into 5 Arabic variants, namely Egyptian, Gulf, Levantine, North-African, and Modern Standard Arabic (MSA). The training data is relatively small and is automatically generated from an ASR system. To avoid over-fitting on such small data, we carefully selected and designed the features to capture the morphological essence of the different dialects. We submitted four runs to the Arabic sub-task. For all runs, we used a combined feature vector of character bi-grams, tri-grams, 4-grams, and 5-grams. We tried several machine-learning algorithms, namely Logistic Regression, Naive Bayes, Neural Networks, and Support Vector Machines (SVM) with linear and string kernels. However, our submitted runs used SVM with a linear kernel. In the closed submission, we got the best accuracy of 0.5136 and the third best weighted F1 score, with a difference less than 0.002 from the highest score.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="eldesouki-etal-2016-qcri">
<titleInfo>
<title>QCRI @ DSL 2016: Spoken Arabic Dialect Identification Using Textual Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohamed</namePart>
<namePart type="family">Eldesouki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fahim</namePart>
<namePart type="family">Dalvi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hassan</namePart>
<namePart type="family">Sajjad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liling</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper describes the QCRI submissions to the task of automatic Arabic dialect classification into 5 Arabic variants, namely Egyptian, Gulf, Levantine, North-African, and Modern Standard Arabic (MSA). The training data is relatively small and is automatically generated from an ASR system. To avoid over-fitting on such small data, we carefully selected and designed the features to capture the morphological essence of the different dialects. We submitted four runs to the Arabic sub-task. For all runs, we used a combined feature vector of character bi-grams, tri-grams, 4-grams, and 5-grams. We tried several machine-learning algorithms, namely Logistic Regression, Naive Bayes, Neural Networks, and Support Vector Machines (SVM) with linear and string kernels. However, our submitted runs used SVM with a linear kernel. In the closed submission, we got the best accuracy of 0.5136 and the third best weighted F1 score, with a difference less than 0.002 from the highest score.</abstract>
<identifier type="citekey">eldesouki-etal-2016-qcri</identifier>
<location>
<url>https://aclanthology.org/W16-4828</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>221</start>
<end>226</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T QCRI @ DSL 2016: Spoken Arabic Dialect Identification Using Textual Features
%A Eldesouki, Mohamed
%A Dalvi, Fahim
%A Sajjad, Hassan
%A Darwish, Kareem
%Y Nakov, Preslav
%Y Zampieri, Marcos
%Y Tan, Liling
%Y Ljubešić, Nikola
%Y Tiedemann, Jörg
%Y Malmasi, Shervin
%S Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F eldesouki-etal-2016-qcri
%X The paper describes the QCRI submissions to the task of automatic Arabic dialect classification into 5 Arabic variants, namely Egyptian, Gulf, Levantine, North-African, and Modern Standard Arabic (MSA). The training data is relatively small and is automatically generated from an ASR system. To avoid over-fitting on such small data, we carefully selected and designed the features to capture the morphological essence of the different dialects. We submitted four runs to the Arabic sub-task. For all runs, we used a combined feature vector of character bi-grams, tri-grams, 4-grams, and 5-grams. We tried several machine-learning algorithms, namely Logistic Regression, Naive Bayes, Neural Networks, and Support Vector Machines (SVM) with linear and string kernels. However, our submitted runs used SVM with a linear kernel. In the closed submission, we got the best accuracy of 0.5136 and the third best weighted F1 score, with a difference less than 0.002 from the highest score.
%U https://aclanthology.org/W16-4828
%P 221-226
Markdown (Informal)
[QCRI @ DSL 2016: Spoken Arabic Dialect Identification Using Textual Features](https://aclanthology.org/W16-4828) (Eldesouki et al., VarDial 2016)
ACL