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Abstract

We propose an approach for named entity recognition in medical data, using a character-based
deep bidirectional recurrent neural network. Such models can learn features and patterns based
on the character sequence, and are not limited to a fixed vocabulary. This makes them very well
suited for the NER task in the medical domain. Our experimental evaluation shows promising
results, with a 60% improvement in F1 score over the baseline, and our system generalizes well
between different datasets.

1 Introduction

Named Entity Recognition (NER) is the task of finding mentions of named entities in a text. In non-
medical NER, entity classes are typically people, organizations, and locations. It is one of the fundamen-
tal Natural Language Processing (NLP) tasks and has been studied extensively.

Figure 1: A Swedish medical example text
with NER tags illustrated with colour.

In this paper, we approach the problem of finding med-
ical entities such as (1) disorders and findings, (2) phar-
maceutical drugs, and (3) body structure. Our proposed
method uses deep bidirectional character-based recurrent
neural networks (RNNs), trained in an end-to-end fash-
ion to perform both boundary detection and classification
at the same time.

There are a number of properties that make this prob-
lem especially challenging in biomedical text (Zhou et
al., 2004). Firstly, names composed of multiple words
are frequently used to describe an entity, highlighting the
requirement of good boundary detection on an NER sys-
tem. Secondly, one noun can be part of a mention of
several entities at the same time E.g: “91 and 84 kDa proteins” consists of two entity names: “91 kDa
proteins” and “84 kDa proteins”. Thirdly, it is common to write the same biomedical entity in different
ways, e.g: “N-acetylcysteine”, “N-acetyl-cysteine”, “NAcetylCysteine”. Lastly, ambiguous mentions
are common, including abbreviations that refer to different things in different contexts. (The examples
above are from Zhou et al. (2004)).

Our proposed method has a number of benefits over previous work: Firstly, the model can simulta-
neously recognize and classify entity mentions. Secondly, using an end-to-end neural network approach
eliminates the need for feature engineering. All features needed are learned by the model during train-
ing. Thirdly, because our model works on the raw character sequence, it does not suffer from out-of-
vocabulary terms, it can learn that different character patterns represent the same thing, and it can learn
the typical character-based features often used in traditional machine learning based solutions to NER.

We evaluate the model on Swedish health records in the Stockholm EPR corpus and obtain promising
results. We also note that the method generalizes well between different datasets.
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2 Background

A recurrent neural network (RNN) is a feedforward artificial neural network that can model a sequence
of arbitrary length, using weight sharing between each position in the sequence. In a language setting,
it is common to model sequences of words, in which case each input xt is the vector representation of a
word. In the basic RNN variant, the transition function is a linear transformation of the hidden state and
the input, followed by a pointwise nonlinearity:

ht = tanh(Wxt + Uht−1 + b),

where W and U are trainable weight matrices, b is a bias term, and tanh is the nonlinearity.
Basic RNNs struggle with learning long dependencies and suffer from the vanishing gradient problem.

This makes RNN models difficult to train (Hochreiter, 1998; Bengio et al., 1994), and provoked the
development of the Long Short Term Memory (LSTM) (Schmidhuber and Hochreiter, 1997), that to
some extent solves these shortcomings. An LSTM is an RNN where the cell at each step t contains an
internal memory vector ct, and three gates controlling what parts of the internal memory will be kept (the
forget gate ft), what parts of the input that will be stored in the internal memory (the input gate it), as
well as what will be included in the output (the output gate ot). In essence, this means that the following
expressions are evaluated at each step in the sequence, to compute the new internal memory ct and the
cell output ht. Here “�” represents element-wise multiplication.

it = σ(W (i)xt + U (i)ht−1 + b(i)),

ft = σ(W (f)xt + U (f)ht−1 + b(f)),

ot = σ(W (o)xt + U (o)ht−1 + b(o)),

ut = tanh(W (u)xt + U (u)ht−1 + b(u)),
ct = it � ut + ft � ct−1,

ht = ot � tanh(ct). (1)

Most RNN based models work on word level. Words are coded as a one-hot vector, and each word is
associated with an internally learned embedding vector. In this work, we propose a character-level model
that is able to learn features based on arbitrary parts of the character sequence.

LSTM networks have been used successfully for language modelling, sentiment analysis (Tang et al.,
2015), textual entailment (Rocktäschel et al., 2016), and machine translation (Sutskever et al., 2014).
In the following sections, we will see that the learned features are also suitable for recognizing and
classifying mentions of medical entities in health record data.

3 Named Entity Recognition with Character-Based Deep Bidirectional LSTMs

In this paper, we propose a character based RNN model with deep bidirectional LSTM cells (BiLSTM) to
do Named Entity Recognition in the medical domain (see Figure 2). The model is trained and evaluated
on medical texts in Swedish. It has a softmax output layer with four outputs corresponding to each
position in the input sequence, representing the three different entity labels, and a special label for all
non-entity characters.

The model is trained end-to-end using backpropagation and the Adam optimizer (Diederik Kingma,
2015) to perform entity classification on a character-by-character basis. A neural network learns to
internally represent data with representations that are useful for the task. This is an effect of using
backpropagation, and allows us to eliminate all manual feature engineering, enabling quick deployment
of our system.
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Figure 2: A deep bidirectional LSTM network. At each input xt, the model is trained to output a
prediction yt of the correct entity class. In this paper, each block is a deep LSTM cell (see Figure 3), and
the network is trained using backpropagation through time (BPTT).

3.1 Character classification
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Figure 3: A deep LSTM
cell, consisting of 3 inter-
nally stacked LSTM cells.

Our model works on the raw character sequence of the input document.
This is an approach that has proven to work well in some other NLP appli-
cations, (see e.g. Luong and Manning (2016), ?)).

Compared to a word-based sequence model, this means that we can use
a much smaller vocabulary for the input tokens. Traditional (non-neural)
entity recognition systems typically rely heavily on hand-engineered
character-based features, such as capitalization, numerical characters,
word prefixes and suffixes (Ratinov and Roth, 2009). Having the capacity
of learning this kind of features automatically is what motivated us to use
this kind of model. A character-based model does not rely on words being
in its vocabulary: any word can be represented, as long as it is written with
the given alphabet.

The character sequence model computes one classification output per in-
put character. The label is one of: (1) disorders and findings, (2) pharma-
ceutical drugs, (3) body structure, (4) non-entity term. Using these labels
(including the special “non-entity” label), we can simultaneously recog-
nize and classify entity mentions by computing one label per character in
the input text. This means that we can interpret each connected subsequence with the same classification
as an entity mention.

However, there are some special cases: Firstly, to handle the situation when sporadic characters are
classified inconsistently, we treat the character classifications as a voting mechanism for each word, and
the majority class is chosen. Secondly, if a space between two tokens is classified consistently with the
two tokens, both tokens are interpreted as belonging to the same entity mention. If the space is classified
as a non-entity character, the two tokens are treated as two different entity mentions.

4 Experimental setup

This section explains the set-up of the empirical study of our model.

4.1 Model layout
We used a deep bidirectional recurrent neural network with LSTM cells. The depth of the LSTM cells
was set to 3, and we used 128 hidden units in the LSTM cells. The model was implemented using
Tensorflow. Learning rate: 0.002, decay rate: 0.975. Using drop-out on activations from the input
embedding layers as well as on the LSTM output activations were evaluated, but was left out in the final
version. See Section 4.4 for details on hyperparameters. The source code of our model is available on
Github1.

1https://github.com/withtwist/medical-ner/
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4.2 Seed-term collection
Seed-terms are used both to build the datasets (see Section 4.3), and to build up the representations for the
classification centroids in the BOW baseline method. Seed-terms were extracted from two taxonomies,
SweMeSH2, a taxonomy of Swedish medical terms and Snomed CT3, consisting of Swedish medical
concept terms. Using the hierarchical structure of the two taxonomies, all terms that was descendants
of each of our predefined categories was extracted and considered seed-terms. The following prede-
fined categories was used for the extraction: disorder & finding (sjukdom & symtom), pharmaceutical
drug (läkemedel) and body structure (kroppsdel). The choice of these main entity classes was aligned
with Skeppstedt et al. (2014).

4.3 Datasets
We use an approach similar to Mintz et al. (2009) to obtain the data needed for training and evaluation.
The datasets that we prepared for training, validating and testing our model are available for download
at https://github.com/olofmogren/biomedical-ner-data-swedish/.

The Läkartidningen corpus was originally presented by Kokkinakis and Gerdin (2010), and contains
articles from the Swedish journal for medical professionals. This was annotated for NER as a part of this
work. All occurrences of seed-terms were extracted (see Section 4.2), along with a context window of
60 characters (approximately ten words). The window is positioned so that the entity mention is located
randomly within the sequence. In addition, negative training examples were extracted in order to prevent
the model from learning that classified entities always occur in every sequence. All the characters in
these negative training examples had the same “non-entity” label. Neural models typically benefit from
large amounts of training data. To increase the amount of training data, each occurrence of seed-terms
were extracted three more times, where the window was shifted by a random number of steps. The
resulting data is a total of 775,000 of sequences with 60 characters each. 10% of the data is negative
data, where every character has the “non-entity” label.

Another dataset was built from medical articles on the Swedish Wikipedia. Firstly, an initial list of med-
ical domain articles were chosen manually and fetched. Secondly, articles were fetched that were linked
from the initial articles. Finally, the seed-terms list (see Section 4.2) was used to create the labels and
extract training examples of 60 character sequences, in the same way as was done with Läkartidningen.

1177 Vårdguiden iis a web site provided by the Swedish public health care authorities, containing
information, counselling, and other health-care services. The corpus consists of 15 annotated documents
downloaded during May 2016. This dataset was manually annotated with the seed-terms list as support
(see Section 4.2). The resulting dataset has 2740 annotations, out of which 1574 are disorder and finding,
546 are pharmaceutical drug, and 620 are body structure.

The Stockholm Electronic Patient Record (EPR) Clinical Entity Corpus (Dalianis et al., 2012) is a
dataset with health records of over two million patients at Karolinska University Hospital in Stockholm
encompassing the years 2006-2014. It consists of 7946 documents containing real-world anonymized
health records with annotations in 4 categories: disorder, finding, drug and body structure. Since we
have a category where “disorder” and “finding” are bundled together they were considered the same.

Läkartidningen, Swedish Wikipedia, and 1177 Vårdguiden are all datasets with rather high quality
text, most of it even professionally edited. This is in stark contrast to the text in Stockholm EPR where
misspellings are common, there are reduntant parts in many records, and writing style is highly di-
verse (Dalianis et al., 2009).

2http://mesh.kib.ki.se/swemesh/swemesh_se.cfm
3http://www.socialstyrelsen.se/nationellehalsa/snomed-ct
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4.4 Hyperparameter search

Figure 4: Validation loss.

A number of settings for hyperparameters were explored
during development. In the variations listed below, one hy-
perparameter at the time is varied and evaluated, and if we
saw an improvement, the change of setting was retained.
A more thorough hyperparameter investigatin is left for fu-
ture work. For the three first experiments, dropout was
used on the activations from the embedding layer, as well
as on the activations on the LSTM outputs. (See Sec-
tion 4.1 for details).

Deeper: A model using 4 stacked LSTM cells. Learning
rate: 0.05, decay rate: 0.975, drop probability: 0.5. Low
learning rate: LSTK depth: 3, learning rate: 0.002, decay
rate: 0.975. Lowering the learning rate proved useful and 0.002 became the default setting for learning
rate. Drop probability: 0.5. Smaller network: 64 hidden units in each LSTM cell. LSTM depth: 3:
learning rate: 0.002, decay rate: 0.975, drop probability: 0.5. No dropout: This model left all the settings
as default but removed dropout entirely. 128 hidden units in each LSTM cell, LSTM depth: 3, learning
rate: 0.002 and decay rate: 0.975. This setting proved to be the best, which meant that the default settings
subsequently never used dropout. Even lower learning rate: Learning rate: 0.0002 and decay rate: 0.975.
No drop-out.

See Figure 4 for the validation performance of the different settings. The resulting model used in
the final experiments reported in Section 5 had 3 stacked LSTM layers with 128 hidden units in each.
Learning rate: 0.002, decay rate 0.975, and no drop-out.

4.5 Baselines

Two baselines were implemented and used. The dictionary baseline simply consist of dictionary look-
ups of the encountered words in the list of seed-terms. The BOW (Bag-Of-Words) baseline is based
on Zhang and Elhadad (2013). The original version was developed for and evaluated on medical texts
in English. The approach considers each noun-phrase as an entity candidate, and represents each candi-
date using a weighted bag-of-words-vector for the context. The required preprocessing is tokenization,
sentence splitting, part-of-speech-tagging, and noun phrase chunking. The first steps was done using
GATE (Cunningham et al., 2011) and OpenNLP4, while noun phrase chunking was done using Swe-
SPARK (Aycock, 1998). An IDF threshold is used to filter out uncommon or unspecific noun phrases.
Then for each category the algorithm builds an average context vector representing the mentions in a
training corpus. We used a triangular window for the context vectors, giving the central words a weight
of 20, and context words the weight of 1/k, where k is the distance from the central word. Mentions with
a cosine similarity lower than 0.005 to any of the category vectors was discarded. Candidate mentions
that have a difference between the top two scoring categories that is lower than 0.7 are also discarded.

Zhang and Elhadad (2013) used one bag-of-words vector for the internal words of an entity mention,
and one for the context words of the mention. The two vectors were then concatenated, resulting in a
vector which is twice the size of their vocabulary. Since the bag-of-words-vectors are already sparse to
begin with, we added them together instead and made it possible to use a larger vocabulary size.

4.6 Training

Development and training were performed using text from Läkartidningen (Kokkinakis and Gerdin,
2010). Validation was done using the Medical Wikipedia dataset. Training was done using the Adam
optimizer (Diederik Kingma, 2015).

4http://opennlp.sourceforge.net/models-1.5/

34



4.7 Evaluation

Evaluation of the proposed model was performed on two different datasets: Stockholm EPR cor-
pus (Dalianis et al., 2012), with anonymized health record data in Swedish, and 1177 Vårdguiden.

We report F1 scores for total named entity recognition, as well as only entity classification (given
correct boundary detection, we report scores of the entity classification performed by the system).

In the BOW baseline the entities are determined before hand while the Char-BiLSTM model recog-
nizes and classifies them as it traverses the document.

5 Results

This section presents the results of the experimental evaluation of the proposed model. Table 1 shows
the results of running the dictionary baseline model on Stockholm EPR corpus (Dalianis et al., 2012).
The baseline model achieves a precision of over 0.70 on disorder & Finding and body structure, but is
substantially lower for pharmaceutical drug. It has a higher precision than recall in general due to the
fact that if a match is found it is probably correct. The algorithm got a precision of 0.67, a recall of 0.12
and an F1 score of 0.20.

Category P R F1

Disorder & finding 0.76 0.12 0.20
Pharmaceutical drug 0.25 0.04 0.07
Body structure 0.70 0.29 0.41

Total 0.67 0.12 0.20

Table 1: Dictionary baseline performance on the Stockholm EPR corpus. Although total precision is
reasonably good (0.67), the precision (0.12) is not.

The evaluation of the Char-BiLSTM model was performed on 733 real-world examples of health
records from Stockholm EPR corpus (Dalianis et al., 2012). Since the data is very sensitive the evaluation
was not performed by ourselves but instead the holder of the data performed the evaluations.

Char-BiLSTM overall results: The results in Table 2 shows the results of the Char-BiLSTM model.
Both disorder & finding and body structure have a much higher precision than recall, while pharmaceu-
tical drug is better balanced.

Category P R F1

Disorder & findings 0.72 0.18 0.29
Pharmaceutical drugs 0.69 0.43 0.53
Body structure 0.46 0.28 0.35

Total 0.67 0.24 0.35

Table 2: Results for Char-BiLSTM on Stockholm EPR corpus. The model obtains a total precision that
matches the dictionary baseline (0.67), and a recall that is much higher than the baseline (0.24).

Char-BiLSTM results, classification only: Given the boundaries for the entities in Stockholm EPR
corpus, the performance of the Char-BiLSTM model (performing only classification of the given entities)
is given in Table 3. The table shows promising results for both the category disorder & finding and
pharmaceutical drug which has an F1 score of 0.81 and 0.74 respectively. body structure shows a weaker
F1 score of 0.47. The model got an overall F1 score of 0.75.

We compare our system with the two baselines using the 1177 Vårdguiden corpus. Since the BOW
baseline detects boundaries using whole noun phrases, we re-ran the experiments, adjusting the evalua-
tion data, so that the boundaries were complete noun-phrases.
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Category P R F1

Disorder & findings 0.92 0.73 0.81
Pharmaceutical drugs 0.64 0.87 0.74
Body structure 0.36 0.68 0.47

Total 0.75 0.75 0.75

Table 3: Entity classification results of Char-BiLSTM on Stockholm EPR corpus. Given the entity
boundaries, we can see that the classification of entities work very well, obtaining a total F1 score of
0.75.

Comparing the results of the models in Table 4, we see that the BOW baseline does not perform well
due to the wider boundaries that it detects. This can clearly be seen in the experiments with adjusted data,
where it performs around 47% better. All models have around 0.50 in precision, except for the adjusted
BOW baseline which comes in at 0.32. Recall is much lower (between 0.08 and 0.17), except for the
BiLSTM model which has a recall of 0.21. This is the main reason why the BiLSTM model has the
highest F1 score with 0.29. At the second place comes the adjusted BOW baseline at 0.22, followed by
the dictionary baseline model at 0.22 and lastly the BOW baseline with 0.15. Even though the dictionary
baseline model and the adjusted BOW baseline have similar performance scores, we can see that their
precision and recall are vastly different. The dictionary baseline model has a high precision and a low
recall, while the adjusted BOW baseline is more balanced between precision and recall.

Model P R F1

Dictionary 0.54 0.14 0.22
BOW 0.55 0.09 0.15
BOW (adj.) 0.32 0.17 0.22
Char-BiLSTM 0.48 0.21 0.29

Table 4: Comparison of the results between each model on 1177 Vårdguiden.

6 Related work

Supervised NER has been thoroughly explored in the past. Finkel et al. (2005) used Conditional Random
Fields (CRF), a technique often used for NER. Zhou et al. (2004) used Hidden Markov Models (HMMs)
along with extensive feature engineering to perform NER on medical texts. State-of-the-art in the medical
domain have been achieved by Wang and Patrick (2009) with a combination of CRF, Support Vector
Machines (SVM) and Maximum Entropy (ME) to recognize and classify entities.

Skeppstedt et al. (2014) currently holds the state-of-the-art in Swedish for the medical domain, based
on CRF.

Recently, a number of papers have proposed using RNNs for sequence labelling tasks. Cı́cero
Nogueira dos Santos (2015) presented a model that learns word embeddings along with character embed-
dings from a convolutional layer, which are used in a window-based fixed feed forward neural network.
Huang et al. (2015) proposed a bidirectional LSTM model, but it used traditional feature engineering,
and the classification was performed using a CRF layer in the network. In contrast, our proposed model
learns all its features, and can be trained efficiently with simple backpropagation and stochastic gradient
descent. Ma and Hovy (2016) presented a model that uses a convolutional network to compute repre-
sentations for parts of words. Then the representations are combined with some character-level features
and fed into a bidirectional LSTM network, and finally a CRF performs the labelling. Chiu and Nichols
(2016) presented a similar model but with a softmax output instead of the CRF layer. Like our system,
the models are trained end-to-end and obtains good results on standard NER evaluations, however our
system is conceptually simpler, and learns all of its features directly from the character stream. Lam-
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ple et al. (2016) presented two different architechtures, one using LSTMs and CRFs, and one using a
shift-reduce approach. Gillick et al. (2016) presented a character-based model with LSTM units similar
to a translation model, but instead of decoding into a different language, the state from the encoder is
decoded into a sequence of tags.

Learning representations for text is important for many other tasks within natural language processing.
A common way of representing sequences of words is to use some form of word embeddings (Mikolov
et al., 2013; Pennington et al., 2014; Collobert and Weston, 2008), and for each word in the sequence,
do an element-wise addition (Mitchell and Lapata, 2010). This approach works well for many applica-
tions, such as phrase similarity, multi-document summarization (Mogren et al., 2015), and word sense
induction (Kågebäck et al., 2015), even though it disregards the order of the words. In contrast, RNNs
and LSTMs (Hochreiter and Schmidhuber, 1997) learn representations for text that takes the order into
account. They have been successfully been applied to sentiment analysis (Tang et al., 2015), question
answering systems (Hagstedt P Suorra and Mogren, 2016), and machine translation (Sutskever et al.,
2014).

Character-based neural sequence models have recently been presented to tackle the problem of out-of-
vocabulary terms in neural machine translation (Luong and Manning, 2016; Chung et al., 2016) and for
language modelling (Kim et al., 2016).

7 Discussion

The results of the empirical evaluation of the proposed system show some interesting points, suggesting
that this approach should be researched further.

We have evaluated our model on the Stockholm EPR corpus of Swedish health records, but we did
not compare our scores with other approaches that was evaluated on the same dataset. The reason is that
we were unable to do a fair comparison since our model was trained on other data. We believe that our
scores are competitive, and indicates that the model is promising. While systems that were trained on
data from the same corpus show better performance in the evaluation on Stockholm EPR (Skeppstedt et
al., 2014), we note that our solution can be trained on a dataset that is quite diferent from the test set.
This can be explained in part with the documented robustness of character-based recurrent neural models
to misspellings and out-of-vocabulary terms.

We are convinced that our solution would be able to obtain even better scores if able to train on the
same data.

8 Conclusions

In this paper, we have proposed a character-based deep bidirectional LSTM model (Char-BiLSTM) to
perform named entity recognition in Swedish health records. We beat two different baseline methods on
the task, and show that this is a promising research direction. The proposed model obtains an F1 score
of 0.35 which is about 60% better than the BOW baseline (Zhang and Elhadad, 2013). Our model learns
all the features it needs, and therefore eliminates the need for feature engineering. We have seen that
a character-based neural model adapts well to this domain, and in fact that it is able to generalize from
relatively well-written training data to test-data with lesser quality text.
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