@inproceedings{gopalan-lalitha-devi-2016-biodca,
title = "{B}io{DCA} Identifier: A System for Automatic Identification of Discourse Connective and Arguments from Biomedical Text",
author = "Gopalan, Sindhuja and
Lalitha Devi, Sobha",
editor = "Ananiadou, Sophia and
Batista-Navarro, Riza and
Cohen, Kevin Bretonnel and
Demner-Fushman, Dina and
Thompson, Paul",
booktitle = "Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining ({B}io{T}xt{M}2016)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-5110",
pages = "89--98",
abstract = "This paper describes a Natural language processing system developed for automatic identification of explicit connectives, its sense and arguments. Prior work has shown that the difference in usage of connectives across corpora affects the cross domain connective identification task negatively. Hence the development of domain specific discourse parser has become indispensable. Here, we present a corpus annotated with discourse relations on Medline abstracts. Kappa score is calculated to check the annotation quality of our corpus. The previous works on discourse analysis in bio-medical data have concentrated only on the identification of connectives and hence we have developed an end-end parser for connective and argument identification using Conditional Random Fields algorithm. The type and sub-type of the connective sense is also identified. The results obtained are encouraging.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gopalan-lalitha-devi-2016-biodca">
<titleInfo>
<title>BioDCA Identifier: A System for Automatic Identification of Discourse Connective and Arguments from Biomedical Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sindhuja</namePart>
<namePart type="family">Gopalan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="family">Lalitha Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM2016)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Riza</namePart>
<namePart type="family">Batista-Navarro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Thompson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes a Natural language processing system developed for automatic identification of explicit connectives, its sense and arguments. Prior work has shown that the difference in usage of connectives across corpora affects the cross domain connective identification task negatively. Hence the development of domain specific discourse parser has become indispensable. Here, we present a corpus annotated with discourse relations on Medline abstracts. Kappa score is calculated to check the annotation quality of our corpus. The previous works on discourse analysis in bio-medical data have concentrated only on the identification of connectives and hence we have developed an end-end parser for connective and argument identification using Conditional Random Fields algorithm. The type and sub-type of the connective sense is also identified. The results obtained are encouraging.</abstract>
<identifier type="citekey">gopalan-lalitha-devi-2016-biodca</identifier>
<location>
<url>https://aclanthology.org/W16-5110</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>89</start>
<end>98</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BioDCA Identifier: A System for Automatic Identification of Discourse Connective and Arguments from Biomedical Text
%A Gopalan, Sindhuja
%A Lalitha Devi, Sobha
%Y Ananiadou, Sophia
%Y Batista-Navarro, Riza
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Thompson, Paul
%S Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM2016)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F gopalan-lalitha-devi-2016-biodca
%X This paper describes a Natural language processing system developed for automatic identification of explicit connectives, its sense and arguments. Prior work has shown that the difference in usage of connectives across corpora affects the cross domain connective identification task negatively. Hence the development of domain specific discourse parser has become indispensable. Here, we present a corpus annotated with discourse relations on Medline abstracts. Kappa score is calculated to check the annotation quality of our corpus. The previous works on discourse analysis in bio-medical data have concentrated only on the identification of connectives and hence we have developed an end-end parser for connective and argument identification using Conditional Random Fields algorithm. The type and sub-type of the connective sense is also identified. The results obtained are encouraging.
%U https://aclanthology.org/W16-5110
%P 89-98
Markdown (Informal)
[BioDCA Identifier: A System for Automatic Identification of Discourse Connective and Arguments from Biomedical Text](https://aclanthology.org/W16-5110) (Gopalan & Lalitha Devi, 2016)
ACL