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Abstract

This contribution provides a strong baseline result for the CogALex-V shared task using a tradi-
tional “count”-type DSM (placed in rank 2 out of 7 in subtask 1 and rank 3 out of 6 in subtask 2).
Parameter tuning experiments reveal some surprising effects and suggest that the use of random
word pairs as negative examples may be problematic, guiding the parameter optimization in an
undesirable direction.

1 Introduction

It is generally assumed that traditional “count”-type distributional semantic models (DSM) are good
at identifying attributionally similar words, but cannot distinguish between different semantic relations
(e.g. synonyms, antonyms, hypernyms) and work poorly for other forms of semantic relatedness such
as meronymy (Baroni and Lenci, 2011). Moreover, DSMs based on syntactic dependency relations
are supposed to achieve better results than window-based models (Padó and Lapata, 2007). The goal
of the present paper is to test how well traditional DSMs can be tuned to identify different types of
semantic relations in the CogALex-V shared task. It can thus be seen as a strong baseline against which
more specialized approaches can be compared. The system developed here is nicknamedマッハ号, or
Mach51 in English.

According to the distributional hypothesis (Harris, 1954), semantically related words should have
a smaller distance in a distributional space than unrelated words, especially if they are attributionally
similar. This suggests a simple strategy for the identification of semantically related words in subtask 1:
candidate pairs are predicted to be related if their distributional distance is below a specified threshold
value θ. The choice of θ determines the trade-off between precision and recall as visualized in the left
panel of Fig. 1, where the thin dotted line shows precision (P ) and the thin dashed line shows recall (R)
for different values of θ. The optimal threshold θ∗ = 80.7◦ – indicated by a circle and a thin vertical
line – is chosen to maximize F1-score, the harmonic mean of precision and recall, which is also the
main evaluation criterion in the CogALex-V task. In this example, the DSM achieves P = 76.27%,
R = 74.38% and F1 = 75.31% on the training data.

DSM distances cannot be used in the same way to discriminate between semantic relations in subtask
2 because antonyms, synonyms, hypernyms, etc. will all be relatively close in semantic space and their
distance distributions are similar (Baroni and Lenci, 2011; Santus et al., 2015). Therefore, Mach5 im-
plements a simple machine learning approach for this subtask, as described in Sec. 3. Parameters of the
underlying DSM are tuned based on the overall identification of semantically related words (Sec. 2).

2 The Mach5 DSM

The Mach5 distributional model is based on ENCOW 2014, a large English Web corpus (Schäfer and
Bildhauer, 2012) with a size of approx. 9.5 billion tokens after sentence deduplication. A particular

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1https://en.wikipedia.org/wiki/Mach_Five
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Figure 1: Left panel: Application of DSM distances (angles) to the identification of semantically related
words. Right panel: Performance in subtask 1 depending on the number of feature dimensions used.

advantage of this huge corpus is its full coverage of the CogALex-V training and test sets, so that no spe-
cial handling of unseen words is required. Both a dependency-filtered and a dependency-structured DSM
were compiled from syntactic dependencies obtained with the robust C&C parser (Curran et al., 2007).
The target vocabulary of 26,450 lemmas extends the vocabulary of Distributional Memory (Baroni and
Lenci, 2010) with all words in the training and test sets of the shared task. Similar to the gold standard,
the DSM uses lemmatized words (from TreeTagger) but does not distinguish between homonyms with
different parts of speech (such as clearADJ and clearVERB). The 120,000 most frequent lemmas were
extracted as features for the dependency-filtered model (henceforth DepFilt); the 300,000 most frequent
relation-lemma combinations (e.g. OBJ=cat) were extracted as features for the dependency-structured
model (henceforth DepStruct).

Some basic parameters were set according to the recommendations of Lapesa and Evert (2014): sparse
(i.e. non-negative) simple log-likelihood (simple-ll) is used as an association measure for feature weight-
ing and an additional log transformation is applied to the simple-ll scores. The models use angular
distance (equivalent to cosine similarity) and explore logarithmic neighbour rank as an index of semantic
(dis)similarity. Other parameters are tuned incrementally on the training data, as described in the follow-
ing subsections. The main tuning criterion is the F1 score achieved by an optimal cutoff threshold on the
training data of subtask 1.

2.1 Feature selection
A first step is to determine how many feature dimensions are required in order to achieve good results
and whether the dependency-filtered or the dependency-structured model is superior. The right panel of
Fig. 1 plots F1-scores in subtask 1 against the number of most frequent features and the other parameters.
The graphs show clearly that more features produce better results and that further improvements may
be expected from an even larger number of features, especially for DepStruct. Average logarithmic
neighbour rank (solid lines) as an index of relatedness outperforms angular distance (dashed lines) by a
large margin (forward and backward rank fall somewhere in between and have been omitted for clarity).
DepFilt (blue, best F1 = 77.2%) is also considerably better than DepStruct (green, best F1 = 75.3%),
even with a much smaller number of features.

Some authors suggest that medium-frequency features are the most informative for DSMs (Kiela and
Clark, 2014), which motivates experiments with feature windows of 10,000–50,000 features in different
frequency ranges. Fig. 2 shows the starting point of the feature window (i.e. the number of most frequent
features skipped) on the x-axis and different window sizes in different colours.

For DepFilt (left panel), excluding the most frequent dimensions has a strong negative effect on angu-
lar distance. However, neighbour rank improves up to F1 = 78.03% if the first 20,000–50,000 features
are skipped, and it deteriorates much more slowly afterwards. The number of features in the window
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Figure 2: Performance of different feature windows in subtask 1 for DepFilt (left) and DepStruct (right).
The x-axis shows how many thousands (K) of features are skipped.

seems to make little difference, especially for neighbour rank where as few as 20,000 features are suffi-
cient.2 The observations for DepStruct (right panel) are similar, but even more striking. Angular distance
improves considerably if up to 50,000 high-frequency features are skipped, then declines only slowly.
For neighbour rank, performance continues to improve and achieves F1 = 77.25% when more than
100,000 features are skipped; in other words, a relatively small window of lower-frequency features
seems to yield the best results. Contrary to what Fig. 1 suggested, DepFilt and DepStruct now achieve
similar F1-scores with a suitably chosen window of less than 50,000 words; both results are better than
those reported above for the full feature sets.

For further experiments involving dimensionality reduction, somewhat larger feature windows are
selected because the latent dimensions might be able to exploit shared information unlike the unreduced
models evaluated here. DepFilt uses feature ranks 20,000–70,000 (with 1292 ≤ f ≤ 12720) to achieve
F1 = 77.25% in subtask 1; DepStruct uses feature ranks 50,000–150,000 (with 1796 ≤ f ≤ 11040) to
achieve F1 = 76.52%.3

2.2 Dimensionality reduction by SVD

Most evaluation studies find that dimensionality reduction, which is traditionally carried out by an ef-
ficient sparse truncated singular value decomposition (SVD), improves DSM representations. Lapesa
and Evert (2014) report consistently better results across a wide range of evaluation tasks and parame-
ter settings. The following experiments explore how many latent dimensions are required and whether
skipping the first latent dimensions is beneficial (Bullinaria and Levy, 2012; Lapesa and Evert, 2014). In
addition, we look at a parameter that has only recently become popular: Caron’s (2001) power scaling
coefficient P for the SVD dimensions.4 Bullinaria and Levy (2012) report a substantial improvement in
model performance if P is set close to 0, especially for the TOEFL synonym task.

The DepFilt and DepStruct vectors selected in Sec. 2.1 are normalized according to the Euclidean
norm, then SVD is applied to project them into 1000 latent dimensions for each model. The left panel
of Fig. 3 shows that power scaling with P < 1 leads to a substantial improvement. For both models,
P = 0 is a nearly optimal and theoretically motivated choice. It is particularly fascinating that power
scaling evens out most of the differences between angular distance and neighbour rank as well as be-
tween DepStruct and DepFilt, with DepStruct performing slightly better now. Fixing P = 0, additional

2It is interesting to note that Schütze (1998) and several other early papers use 20,000 feature dimensions.
3In a 100-million-word corpus like the British National Corpus, this would correspond to frequencies between approx. 10

and 150 occurrences, i.e. a range of words that are normally excluded from distributional models.
4P = 1 corresponds to standard SVD, P > 1 gives more weight to the first latent dimensions (capturing the strongest

correlation patterns), and P < 1 equalizes the dimensons. In particular, for P = 0 each latent dimension makes the same
average contribution to distances between the word vectors (under certain additional circumstances).
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Figure 3: Effect of power scaling on SVD dimensions (Caron’s P , left panel) and of further truncation
of SVD as well skipping the first latent dimensions (for P = 0, right panel).

experiments show that skipping the first SVD dimensions does not lead to a further improvement, but
rather to a considerably decrease in quality (left panel of Fig. 3). This surprising effect appears to be
caused by feature equalization: without power scaling (i.e. P = 1), F1 improves when skipping up to 50
SVD dimensions (not shown). Further truncation of the SVD to less than 600 dimensions also decreases
quality, but performance seems to stabilize if at least 600 dimensions are used (blue lines in right panel).

The final Mach5 DSMs are based on the first 600 SVD dimensions with Caron’s P = 0, equalizing
the relative importance of the latent dimensions. Computationally cheaper distance values are used as an
index of semantic relatedness, since they perform only marginally worse than average neighbour rank.

3 The Mach5 system

Run 1 of the Mach5 system only uses distance information from the DepFilt and DepStruct DSMs tuned
in Sec. 2. For subtask 1, an optimal cutoff threshold is determined to maximize F1 on the training data
(DepFilt: 86.4◦, DepStruct: 87.0◦). For subtask 2, a SVM classifier with RBF kernel is applied to
six-dimensional feature vectors containing angular distance as well as forward and backward neighbour
rank from both DepFilt and DepStruct. Metaparameters (C and class weights) were tuned manually by
cross-validation of weighted average F1-scores on the training data.5 Evaluation results on the training
and test sets are shown in Table 1.

Run 2 explores the possibility that different types of semantic relations might be encoded in different
SVD dimensions, which can be exploited by changing the weights of the dimensions when computing
semantic distances. As a computationally efficient approximation, we apply a linear SVM classifier to
feature vectors containing the contribution (xi−yi)2 of each latent dimension i to the Euclidean distance
between the pre-normalized vectors x and y of a word pair.6 Features from DepFilt and DepStruct are
concatenated for a total of 1,200 feature dimensions. Both subtasks can be approached in this way,
training either a binary (substak 1) or a five-way (subtask 2) SVM classifier. Again, metaparameters
were manually tuned on the training data. It turned out to be crucial to set the cost parameter to a low
value C ≤ .01 in order to ensure strong regularization and avoid overfitting.

For the official submission, the runs performing best on the training data were selected, shown in bold
in Table 1. Competition results are thus F1 = 77.88% in subtask 1 and F̄1 = 29.59% in subtask 2. All
models were implemented in R using the wordspace package for distributional semantics (Evert, 2014)

5Cross-validation uses a round-robin scheme grouped by target word in order to avoid item-specific learning. Without this
precaution, cross-validated performance on the training data might be highly optimistic in some cases. For example, a simple
round-robin scheme yielded F̄1 = 39.88% for run 2 in subtask 2, while the more realistic grouped cross-validation yields
F̄1 = 32.37%. Differences are much smaller for the simpler models of run 1.

6These features gave slightly better performance than contribution xiyi to cosine similarity.
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Subtask 1 Subtask 2
Run Train F1 Test F1 Train F̄1 Test F̄1

run 1 DepFilt 80.59 77.88 — —
DepStruct 79.98 76.80 — —

both — — 26.47 23.76
run 2 both 78.12 72.76 32.37 29.59
run 3 both 80.88 78.93 — 31.97

Table 1: Evaluation results of different Mach5 runs on the training data (10-fold cross-validation) and
test data, using the official F1-scores in subtask 1 and weighted average F̄1 across the four semantic
relations in subtask 2. Runs selected for the competition are shown in bold font, the best results obtained
in follow-up experiments are shown in italics.

and the LibSVM classifier from package e1071. Mach5 can be downloaded as an R script together with
the original co-occurrence data from http://www.collocations.de/data/#mach5.

4 Discussion

The optimal cutoff angles determined for subtask 1 are surprisingly high – close to orthogonality – which
suggests a possible problem with the use of random word pairs as negative examples in the gold standard
(and many other DSM evaluation tasks that also use random word pairs as a control). As a consequence,
the parameter tuning in Sec. 2 was guided towards recognizing random word pairs rather than clearly
defined semantic relations. The distribution of DSM distances for different semantic relations in the
left panel of Fig. 4 supports this interpretation: the distances between semantically related words spread
over a wide range and can become very large (sometimes even above 90◦), while most random word
combinations are almost precisely orthogonal. For a DSM with conventional state-of-the-art parameter
settings7 (right panel of Fig. 4), the distribution shows a much larger spread of the random word pairs.

It seems plausible that this “conventional” DSM may contain useful information for the discrimination
between different semantic relations, while the Mach5 DSM has been tuned to identify random word
pairs as accurately as possible. Therefore, a combined approach was implemented after the competition
as run 3 of the Mach5 system. It uses an SVM classifier with RBF kernel, based on the six-dimensional
features vectors from run 1, for distinguishing between related and unrelated word pairs in subtask 1. For
the discrimination between semantic relations, a linear SVM classifier is trained only on related word
pairs, using partial Euclidean distances from the conventional DepFilt model and partial inner products
from the conventional DepStruct model as features (similar to run 2). In subtask 2, the first (binary)
classifier identifies RANDOM pairs, while the second (four-way) classifier selects a relation label for the
remaining word pairs. As can be seen from the bottom row of Table 1, run 3 performs noticeably better
than the submitted system,8 although it would still have ranked in second and third place, respectively,
in the competition. These results provide additional support for the hypothesis that the wide-spread use
of random word pairs as negative examples poses the risk of misguiding DSM parameter tuning.
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Figure 4: Distribution of DSM distances across the four semantic relations and the random controls
in the test data for CogALex-V subtask 2, comparing the tuned Mach5 model (left panel) against a
dependency-filtered DSM with conventional state-of-the-art parameter settings (right panel).
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