@inproceedings{guggilla-2016-cogalex,
title = "{C}og{AL}ex-{V} Shared Task: {CGSRC} - Classifying Semantic Relations using Convolutional Neural Networks",
author = "Guggilla, Chinnappa",
editor = "Zock, Michael and
Lenci, Alessandro and
Evert, Stefan",
booktitle = "Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon ({C}og{AL}ex - V)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-5314",
pages = "104--109",
abstract = "In this paper, we describe a system (CGSRC) for classifying four semantic relations: synonym, hypernym, antonym and meronym using convolutional neural networks (CNN). We have participated in CogALex-V semantic shared task of corpus-based identification of semantic relations. Proposed approach using CNN-based deep neural networks leveraging pre-compiled word2vec distributional neural embeddings achieved 43.15{\%} weighted-F1 accuracy on subtask-1 (checking existence of a relation between two terms) and 25.24{\%} weighted-F1 accuracy on subtask-2 (classifying relation types).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guggilla-2016-cogalex">
<titleInfo>
<title>CogALex-V Shared Task: CGSRC - Classifying Semantic Relations using Convolutional Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chinnappa</namePart>
<namePart type="family">Guggilla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex - V)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Zock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Evert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe a system (CGSRC) for classifying four semantic relations: synonym, hypernym, antonym and meronym using convolutional neural networks (CNN). We have participated in CogALex-V semantic shared task of corpus-based identification of semantic relations. Proposed approach using CNN-based deep neural networks leveraging pre-compiled word2vec distributional neural embeddings achieved 43.15% weighted-F1 accuracy on subtask-1 (checking existence of a relation between two terms) and 25.24% weighted-F1 accuracy on subtask-2 (classifying relation types).</abstract>
<identifier type="citekey">guggilla-2016-cogalex</identifier>
<location>
<url>https://aclanthology.org/W16-5314</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>104</start>
<end>109</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CogALex-V Shared Task: CGSRC - Classifying Semantic Relations using Convolutional Neural Networks
%A Guggilla, Chinnappa
%Y Zock, Michael
%Y Lenci, Alessandro
%Y Evert, Stefan
%S Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex - V)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F guggilla-2016-cogalex
%X In this paper, we describe a system (CGSRC) for classifying four semantic relations: synonym, hypernym, antonym and meronym using convolutional neural networks (CNN). We have participated in CogALex-V semantic shared task of corpus-based identification of semantic relations. Proposed approach using CNN-based deep neural networks leveraging pre-compiled word2vec distributional neural embeddings achieved 43.15% weighted-F1 accuracy on subtask-1 (checking existence of a relation between two terms) and 25.24% weighted-F1 accuracy on subtask-2 (classifying relation types).
%U https://aclanthology.org/W16-5314
%P 104-109
Markdown (Informal)
[CogALex-V Shared Task: CGSRC - Classifying Semantic Relations using Convolutional Neural Networks](https://aclanthology.org/W16-5314) (Guggilla, CogALex 2016)
ACL