@inproceedings{luce-etal-2016-cogalex,
title = "{C}og{AL}ex-{V} Shared Task: {LOPE}",
author = "Luce, Kanan and
Yu, Jiaxing and
Hsieh, Shu-Kai",
editor = "Zock, Michael and
Lenci, Alessandro and
Evert, Stefan",
booktitle = "Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon ({C}og{AL}ex - V)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-5315",
pages = "110--113",
abstract = "Automatic discovery of semantically-related words is one of the most important NLP tasks, and has great impact on the theoretical psycholinguistic modeling of the mental lexicon. In this shared task, we employ the word embeddings model to testify two thoughts explicitly or implicitly assumed by the NLP community: (1). Word embedding models can reflect syntagmatic similarities in usage between words to distances in projected vector space. (2). Word embedding models can reflect paradigmatic relationships between words.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luce-etal-2016-cogalex">
<titleInfo>
<title>CogALex-V Shared Task: LOPE</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kanan</namePart>
<namePart type="family">Luce</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaxing</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shu-Kai</namePart>
<namePart type="family">Hsieh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex - V)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Zock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Evert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic discovery of semantically-related words is one of the most important NLP tasks, and has great impact on the theoretical psycholinguistic modeling of the mental lexicon. In this shared task, we employ the word embeddings model to testify two thoughts explicitly or implicitly assumed by the NLP community: (1). Word embedding models can reflect syntagmatic similarities in usage between words to distances in projected vector space. (2). Word embedding models can reflect paradigmatic relationships between words.</abstract>
<identifier type="citekey">luce-etal-2016-cogalex</identifier>
<location>
<url>https://aclanthology.org/W16-5315</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>110</start>
<end>113</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CogALex-V Shared Task: LOPE
%A Luce, Kanan
%A Yu, Jiaxing
%A Hsieh, Shu-Kai
%Y Zock, Michael
%Y Lenci, Alessandro
%Y Evert, Stefan
%S Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex - V)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F luce-etal-2016-cogalex
%X Automatic discovery of semantically-related words is one of the most important NLP tasks, and has great impact on the theoretical psycholinguistic modeling of the mental lexicon. In this shared task, we employ the word embeddings model to testify two thoughts explicitly or implicitly assumed by the NLP community: (1). Word embedding models can reflect syntagmatic similarities in usage between words to distances in projected vector space. (2). Word embedding models can reflect paradigmatic relationships between words.
%U https://aclanthology.org/W16-5315
%P 110-113
Markdown (Informal)
[CogALex-V Shared Task: LOPE](https://aclanthology.org/W16-5315) (Luce et al., CogALex 2016)
ACL
- Kanan Luce, Jiaxing Yu, and Shu-Kai Hsieh. 2016. CogALex-V Shared Task: LOPE. In Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex - V), pages 110–113, Osaka, Japan. The COLING 2016 Organizing Committee.