@inproceedings{klenner-etal-2017-stance,
title = "Stance Detection in {F}acebook Posts of a {G}erman Right-wing Party",
author = "Klenner, Manfred and
Tuggener, Don and
Clematide, Simon",
editor = "Roth, Michael and
Mostafazadeh, Nasrin and
Chambers, Nathanael and
Louis, Annie",
booktitle = "Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-0904/",
doi = "10.18653/v1/W17-0904",
pages = "31--40",
abstract = "We argue that in order to detect stance, not only the explicit attitudes of the stance holder towards the targets are crucial. It is the whole narrative the writer drafts that counts, including the way he hypostasizes the discourse referents: as benefactors or villains, as victims or beneficiaries. We exemplify the ability of our system to identify targets and detect the writer`s stance towards them on the basis of about 100 000 Facebook posts of a German right-wing party. A reader and writer model on top of our verb-based attitude extraction directly reveal stance conflicts."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="klenner-etal-2017-stance">
<titleInfo>
<title>Stance Detection in Facebook Posts of a German Right-wing Party</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Klenner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Don</namePart>
<namePart type="family">Tuggener</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Clematide</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nasrin</namePart>
<namePart type="family">Mostafazadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathanael</namePart>
<namePart type="family">Chambers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We argue that in order to detect stance, not only the explicit attitudes of the stance holder towards the targets are crucial. It is the whole narrative the writer drafts that counts, including the way he hypostasizes the discourse referents: as benefactors or villains, as victims or beneficiaries. We exemplify the ability of our system to identify targets and detect the writer‘s stance towards them on the basis of about 100 000 Facebook posts of a German right-wing party. A reader and writer model on top of our verb-based attitude extraction directly reveal stance conflicts.</abstract>
<identifier type="citekey">klenner-etal-2017-stance</identifier>
<identifier type="doi">10.18653/v1/W17-0904</identifier>
<location>
<url>https://aclanthology.org/W17-0904/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>31</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Stance Detection in Facebook Posts of a German Right-wing Party
%A Klenner, Manfred
%A Tuggener, Don
%A Clematide, Simon
%Y Roth, Michael
%Y Mostafazadeh, Nasrin
%Y Chambers, Nathanael
%Y Louis, Annie
%S Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F klenner-etal-2017-stance
%X We argue that in order to detect stance, not only the explicit attitudes of the stance holder towards the targets are crucial. It is the whole narrative the writer drafts that counts, including the way he hypostasizes the discourse referents: as benefactors or villains, as victims or beneficiaries. We exemplify the ability of our system to identify targets and detect the writer‘s stance towards them on the basis of about 100 000 Facebook posts of a German right-wing party. A reader and writer model on top of our verb-based attitude extraction directly reveal stance conflicts.
%R 10.18653/v1/W17-0904
%U https://aclanthology.org/W17-0904/
%U https://doi.org/10.18653/v1/W17-0904
%P 31-40
Markdown (Informal)
[Stance Detection in Facebook Posts of a German Right-wing Party](https://aclanthology.org/W17-0904/) (Klenner et al., LSDSem 2017)
ACL