@inproceedings{flor-somasundaran-2017-sentiment,
title = "Sentiment Analysis and Lexical Cohesion for the Story Cloze Task",
author = "Flor, Michael and
Somasundaran, Swapna",
editor = "Roth, Michael and
Mostafazadeh, Nasrin and
Chambers, Nathanael and
Louis, Annie",
booktitle = "Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-0909/",
doi = "10.18653/v1/W17-0909",
pages = "62--67",
abstract = "We present two NLP components for the Story Cloze Task {--} dictionary-based sentiment analysis and lexical cohesion. While previous research found no contribution from sentiment analysis to the accuracy on this task, we demonstrate that sentiment is an important aspect. We describe a new approach, using a rule that estimates sentiment congruence in a story. Our sentiment-based system achieves strong results on this task. Our lexical cohesion system achieves accuracy comparable to previously published baseline results. A combination of the two systems achieves better accuracy than published baselines. We argue that sentiment analysis should be considered an integral part of narrative comprehension."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="flor-somasundaran-2017-sentiment">
<titleInfo>
<title>Sentiment Analysis and Lexical Cohesion for the Story Cloze Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Flor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapna</namePart>
<namePart type="family">Somasundaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nasrin</namePart>
<namePart type="family">Mostafazadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathanael</namePart>
<namePart type="family">Chambers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present two NLP components for the Story Cloze Task – dictionary-based sentiment analysis and lexical cohesion. While previous research found no contribution from sentiment analysis to the accuracy on this task, we demonstrate that sentiment is an important aspect. We describe a new approach, using a rule that estimates sentiment congruence in a story. Our sentiment-based system achieves strong results on this task. Our lexical cohesion system achieves accuracy comparable to previously published baseline results. A combination of the two systems achieves better accuracy than published baselines. We argue that sentiment analysis should be considered an integral part of narrative comprehension.</abstract>
<identifier type="citekey">flor-somasundaran-2017-sentiment</identifier>
<identifier type="doi">10.18653/v1/W17-0909</identifier>
<location>
<url>https://aclanthology.org/W17-0909/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>62</start>
<end>67</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sentiment Analysis and Lexical Cohesion for the Story Cloze Task
%A Flor, Michael
%A Somasundaran, Swapna
%Y Roth, Michael
%Y Mostafazadeh, Nasrin
%Y Chambers, Nathanael
%Y Louis, Annie
%S Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F flor-somasundaran-2017-sentiment
%X We present two NLP components for the Story Cloze Task – dictionary-based sentiment analysis and lexical cohesion. While previous research found no contribution from sentiment analysis to the accuracy on this task, we demonstrate that sentiment is an important aspect. We describe a new approach, using a rule that estimates sentiment congruence in a story. Our sentiment-based system achieves strong results on this task. Our lexical cohesion system achieves accuracy comparable to previously published baseline results. A combination of the two systems achieves better accuracy than published baselines. We argue that sentiment analysis should be considered an integral part of narrative comprehension.
%R 10.18653/v1/W17-0909
%U https://aclanthology.org/W17-0909/
%U https://doi.org/10.18653/v1/W17-0909
%P 62-67
Markdown (Informal)
[Sentiment Analysis and Lexical Cohesion for the Story Cloze Task](https://aclanthology.org/W17-0909/) (Flor & Somasundaran, LSDSem 2017)
ACL