@inproceedings{schenk-chiarcos-2017-resource,
title = "Resource-Lean Modeling of Coherence in Commonsense Stories",
author = "Schenk, Niko and
Chiarcos, Christian",
editor = "Roth, Michael and
Mostafazadeh, Nasrin and
Chambers, Nathanael and
Louis, Annie",
booktitle = "Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-0910/",
doi = "10.18653/v1/W17-0910",
pages = "68--73",
abstract = "We present a resource-lean neural recognizer for modeling coherence in commonsense stories. Our lightweight system is inspired by successful attempts to modeling discourse relations and stands out due to its simplicity and easy optimization compared to prior approaches to narrative script learning. We evaluate our approach in the Story Cloze Test demonstrating an absolute improvement in accuracy of 4.7{\%} over state-of-the-art implementations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schenk-chiarcos-2017-resource">
<titleInfo>
<title>Resource-Lean Modeling of Coherence in Commonsense Stories</title>
</titleInfo>
<name type="personal">
<namePart type="given">Niko</namePart>
<namePart type="family">Schenk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Chiarcos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nasrin</namePart>
<namePart type="family">Mostafazadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathanael</namePart>
<namePart type="family">Chambers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a resource-lean neural recognizer for modeling coherence in commonsense stories. Our lightweight system is inspired by successful attempts to modeling discourse relations and stands out due to its simplicity and easy optimization compared to prior approaches to narrative script learning. We evaluate our approach in the Story Cloze Test demonstrating an absolute improvement in accuracy of 4.7% over state-of-the-art implementations.</abstract>
<identifier type="citekey">schenk-chiarcos-2017-resource</identifier>
<identifier type="doi">10.18653/v1/W17-0910</identifier>
<location>
<url>https://aclanthology.org/W17-0910/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>68</start>
<end>73</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Resource-Lean Modeling of Coherence in Commonsense Stories
%A Schenk, Niko
%A Chiarcos, Christian
%Y Roth, Michael
%Y Mostafazadeh, Nasrin
%Y Chambers, Nathanael
%Y Louis, Annie
%S Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F schenk-chiarcos-2017-resource
%X We present a resource-lean neural recognizer for modeling coherence in commonsense stories. Our lightweight system is inspired by successful attempts to modeling discourse relations and stands out due to its simplicity and easy optimization compared to prior approaches to narrative script learning. We evaluate our approach in the Story Cloze Test demonstrating an absolute improvement in accuracy of 4.7% over state-of-the-art implementations.
%R 10.18653/v1/W17-0910
%U https://aclanthology.org/W17-0910/
%U https://doi.org/10.18653/v1/W17-0910
%P 68-73
Markdown (Informal)
[Resource-Lean Modeling of Coherence in Commonsense Stories](https://aclanthology.org/W17-0910/) (Schenk & Chiarcos, LSDSem 2017)
ACL