@inproceedings{deriu-etal-2017-potential,
title = "Potential and Limitations of Cross-Domain Sentiment Classification",
author = "Deriu, Jan Milan and
Weilenmann, Martin and
Von Gruenigen, Dirk and
Cieliebak, Mark",
editor = "Ku, Lun-Wei and
Li, Cheng-Te",
booktitle = "Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-1103",
doi = "10.18653/v1/W17-1103",
pages = "17--24",
abstract = "In this paper we investigate the cross-domain performance of a current state-of-the-art sentiment analysis systems. For this purpose we train a convolutional neural network (CNN) on data from different domains and evaluate its performance on other domains. Furthermore, we evaluate the usefulness of combining a large amount of different smaller annotated corpora to a large corpus. Our results show that more sophisticated approaches are required to train a system that works equally well on various domains.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="deriu-etal-2017-potential">
<titleInfo>
<title>Potential and Limitations of Cross-Domain Sentiment Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="given">Milan</namePart>
<namePart type="family">Deriu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Weilenmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Von Gruenigen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Cieliebak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheng-Te</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we investigate the cross-domain performance of a current state-of-the-art sentiment analysis systems. For this purpose we train a convolutional neural network (CNN) on data from different domains and evaluate its performance on other domains. Furthermore, we evaluate the usefulness of combining a large amount of different smaller annotated corpora to a large corpus. Our results show that more sophisticated approaches are required to train a system that works equally well on various domains.</abstract>
<identifier type="citekey">deriu-etal-2017-potential</identifier>
<identifier type="doi">10.18653/v1/W17-1103</identifier>
<location>
<url>https://aclanthology.org/W17-1103</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>17</start>
<end>24</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Potential and Limitations of Cross-Domain Sentiment Classification
%A Deriu, Jan Milan
%A Weilenmann, Martin
%A Von Gruenigen, Dirk
%A Cieliebak, Mark
%Y Ku, Lun-Wei
%Y Li, Cheng-Te
%S Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F deriu-etal-2017-potential
%X In this paper we investigate the cross-domain performance of a current state-of-the-art sentiment analysis systems. For this purpose we train a convolutional neural network (CNN) on data from different domains and evaluate its performance on other domains. Furthermore, we evaluate the usefulness of combining a large amount of different smaller annotated corpora to a large corpus. Our results show that more sophisticated approaches are required to train a system that works equally well on various domains.
%R 10.18653/v1/W17-1103
%U https://aclanthology.org/W17-1103
%U https://doi.org/10.18653/v1/W17-1103
%P 17-24
Markdown (Informal)
[Potential and Limitations of Cross-Domain Sentiment Classification](https://aclanthology.org/W17-1103) (Deriu et al., SocialNLP 2017)
ACL