@inproceedings{bestgen-2017-improving,
title = "Improving the Character Ngram Model for the {DSL} Task with {BM}25 Weighting and Less Frequently Used Feature Sets",
author = "Bestgen, Yves",
editor = {Nakov, Preslav and
Zampieri, Marcos and
Ljube{\v{s}}i{\'c}, Nikola and
Tiedemann, J{\"o}rg and
Malmasi, Shevin and
Ali, Ahmed},
booktitle = "Proceedings of the Fourth Workshop on {NLP} for Similar Languages, Varieties and Dialects ({V}ar{D}ial)",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-1214",
doi = "10.18653/v1/W17-1214",
pages = "115--123",
abstract = "This paper describes the system developed by the Centre for English Corpus Linguistics (CECL) to discriminating similar languages, language varieties and dialects. Based on a SVM with character and POStag n-grams as features and the BM25 weighting scheme, it achieved 92.7{\%} accuracy in the Discriminating between Similar Languages (DSL) task, ranking first among eleven systems but with a lead over the next three teams of only 0.2{\%}. A simpler version of the system ranked second in the German Dialect Identification (GDI) task thanks to several ad hoc postprocessing steps. Complementary analyses carried out by a cross-validation procedure suggest that the BM25 weighting scheme could be competitive in this type of tasks, at least in comparison with the sublinear TF-IDF. POStag n-grams also improved the system performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bestgen-2017-improving">
<titleInfo>
<title>Improving the Character Ngram Model for the DSL Task with BM25 Weighting and Less Frequently Used Feature Sets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yves</namePart>
<namePart type="family">Bestgen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shevin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Ali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the system developed by the Centre for English Corpus Linguistics (CECL) to discriminating similar languages, language varieties and dialects. Based on a SVM with character and POStag n-grams as features and the BM25 weighting scheme, it achieved 92.7% accuracy in the Discriminating between Similar Languages (DSL) task, ranking first among eleven systems but with a lead over the next three teams of only 0.2%. A simpler version of the system ranked second in the German Dialect Identification (GDI) task thanks to several ad hoc postprocessing steps. Complementary analyses carried out by a cross-validation procedure suggest that the BM25 weighting scheme could be competitive in this type of tasks, at least in comparison with the sublinear TF-IDF. POStag n-grams also improved the system performance.</abstract>
<identifier type="citekey">bestgen-2017-improving</identifier>
<identifier type="doi">10.18653/v1/W17-1214</identifier>
<location>
<url>https://aclanthology.org/W17-1214</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>115</start>
<end>123</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving the Character Ngram Model for the DSL Task with BM25 Weighting and Less Frequently Used Feature Sets
%A Bestgen, Yves
%Y Nakov, Preslav
%Y Zampieri, Marcos
%Y Ljubešić, Nikola
%Y Tiedemann, Jörg
%Y Malmasi, Shevin
%Y Ali, Ahmed
%S Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial)
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F bestgen-2017-improving
%X This paper describes the system developed by the Centre for English Corpus Linguistics (CECL) to discriminating similar languages, language varieties and dialects. Based on a SVM with character and POStag n-grams as features and the BM25 weighting scheme, it achieved 92.7% accuracy in the Discriminating between Similar Languages (DSL) task, ranking first among eleven systems but with a lead over the next three teams of only 0.2%. A simpler version of the system ranked second in the German Dialect Identification (GDI) task thanks to several ad hoc postprocessing steps. Complementary analyses carried out by a cross-validation procedure suggest that the BM25 weighting scheme could be competitive in this type of tasks, at least in comparison with the sublinear TF-IDF. POStag n-grams also improved the system performance.
%R 10.18653/v1/W17-1214
%U https://aclanthology.org/W17-1214
%U https://doi.org/10.18653/v1/W17-1214
%P 115-123
Markdown (Informal)
[Improving the Character Ngram Model for the DSL Task with BM25 Weighting and Less Frequently Used Feature Sets](https://aclanthology.org/W17-1214) (Bestgen, VarDial 2017)
ACL