@inproceedings{barbaresi-2017-discriminating,
title = "Discriminating between Similar Languages using Weighted Subword Features",
author = "Barbaresi, Adrien",
editor = {Nakov, Preslav and
Zampieri, Marcos and
Ljube{\v{s}}i{\'c}, Nikola and
Tiedemann, J{\"o}rg and
Malmasi, Shevin and
Ali, Ahmed},
booktitle = "Proceedings of the Fourth Workshop on {NLP} for Similar Languages, Varieties and Dialects ({V}ar{D}ial)",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-1223/",
doi = "10.18653/v1/W17-1223",
pages = "184--189",
abstract = "The present contribution revolves around a contrastive subword n-gram model which has been tested in the Discriminating between Similar Languages shared task. I present and discuss the method used in this 14-way language identification task comprising varieties of 6 main language groups. It features the following characteristics: (1) the preprocessing and conversion of a collection of documents to sparse features; (2) weighted character n-gram profiles; (3) a multinomial Bayesian classifier. Meaningful bag-of-n-grams features can be used as a system in a straightforward way, my approach outperforms most of the systems used in the DSL shared task (3rd rank)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="barbaresi-2017-discriminating">
<titleInfo>
<title>Discriminating between Similar Languages using Weighted Subword Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adrien</namePart>
<namePart type="family">Barbaresi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shevin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Ali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The present contribution revolves around a contrastive subword n-gram model which has been tested in the Discriminating between Similar Languages shared task. I present and discuss the method used in this 14-way language identification task comprising varieties of 6 main language groups. It features the following characteristics: (1) the preprocessing and conversion of a collection of documents to sparse features; (2) weighted character n-gram profiles; (3) a multinomial Bayesian classifier. Meaningful bag-of-n-grams features can be used as a system in a straightforward way, my approach outperforms most of the systems used in the DSL shared task (3rd rank).</abstract>
<identifier type="citekey">barbaresi-2017-discriminating</identifier>
<identifier type="doi">10.18653/v1/W17-1223</identifier>
<location>
<url>https://aclanthology.org/W17-1223/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>184</start>
<end>189</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Discriminating between Similar Languages using Weighted Subword Features
%A Barbaresi, Adrien
%Y Nakov, Preslav
%Y Zampieri, Marcos
%Y Ljubešić, Nikola
%Y Tiedemann, Jörg
%Y Malmasi, Shevin
%Y Ali, Ahmed
%S Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial)
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F barbaresi-2017-discriminating
%X The present contribution revolves around a contrastive subword n-gram model which has been tested in the Discriminating between Similar Languages shared task. I present and discuss the method used in this 14-way language identification task comprising varieties of 6 main language groups. It features the following characteristics: (1) the preprocessing and conversion of a collection of documents to sparse features; (2) weighted character n-gram profiles; (3) a multinomial Bayesian classifier. Meaningful bag-of-n-grams features can be used as a system in a straightforward way, my approach outperforms most of the systems used in the DSL shared task (3rd rank).
%R 10.18653/v1/W17-1223
%U https://aclanthology.org/W17-1223/
%U https://doi.org/10.18653/v1/W17-1223
%P 184-189
Markdown (Informal)
[Discriminating between Similar Languages using Weighted Subword Features](https://aclanthology.org/W17-1223/) (Barbaresi, VarDial 2017)
ACL