@inproceedings{bougrine-etal-2017-toward,
title = "Toward a Web-based Speech Corpus for {A}lgerian Dialectal {A}rabic Varieties",
author = "Bougrine, Soumia and
Chorana, Aicha and
Lakhdari, Abdallah and
Cherroun, Hadda",
editor = "Habash, Nizar and
Diab, Mona and
Darwish, Kareem and
El-Hajj, Wassim and
Al-Khalifa, Hend and
Bouamor, Houda and
Tomeh, Nadi and
El-Haj, Mahmoud and
Zaghouani, Wajdi",
booktitle = "Proceedings of the Third {A}rabic Natural Language Processing Workshop",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-1317/",
doi = "10.18653/v1/W17-1317",
pages = "138--146",
abstract = "The success of machine learning for automatic speech processing has raised the need for large scale datasets. However, collecting such data is often a challenging task as it implies significant investment involving time and money cost. In this paper, we devise a recipe for building largescale Speech Corpora by harnessing Web resources namely YouTube, other Social Media, Online Radio and TV. We illustrate our methodology by building KALAM`DZ, An Arabic Spoken corpus dedicated to Algerian dialectal varieties. The preliminary version of our dataset covers all major Algerian dialects. In addition, we make sure that this material takes into account numerous aspects that foster its richness. In fact, we have targeted various speech topics. Some automatic and manual annotations are provided. They gather useful information related to the speakers and sub-dialect information at the utterance level. Our corpus encompasses the 8 major Algerian Arabic sub-dialects with 4881 speakers and more than 104.4 hours segmented in utterances of at least 6 s."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bougrine-etal-2017-toward">
<titleInfo>
<title>Toward a Web-based Speech Corpus for Algerian Dialectal Arabic Varieties</title>
</titleInfo>
<name type="personal">
<namePart type="given">Soumia</namePart>
<namePart type="family">Bougrine</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aicha</namePart>
<namePart type="family">Chorana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abdallah</namePart>
<namePart type="family">Lakhdari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hadda</namePart>
<namePart type="family">Cherroun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Arabic Natural Language Processing Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nizar</namePart>
<namePart type="family">Habash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mona</namePart>
<namePart type="family">Diab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wassim</namePart>
<namePart type="family">El-Hajj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nadi</namePart>
<namePart type="family">Tomeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahmoud</namePart>
<namePart type="family">El-Haj</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wajdi</namePart>
<namePart type="family">Zaghouani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The success of machine learning for automatic speech processing has raised the need for large scale datasets. However, collecting such data is often a challenging task as it implies significant investment involving time and money cost. In this paper, we devise a recipe for building largescale Speech Corpora by harnessing Web resources namely YouTube, other Social Media, Online Radio and TV. We illustrate our methodology by building KALAM‘DZ, An Arabic Spoken corpus dedicated to Algerian dialectal varieties. The preliminary version of our dataset covers all major Algerian dialects. In addition, we make sure that this material takes into account numerous aspects that foster its richness. In fact, we have targeted various speech topics. Some automatic and manual annotations are provided. They gather useful information related to the speakers and sub-dialect information at the utterance level. Our corpus encompasses the 8 major Algerian Arabic sub-dialects with 4881 speakers and more than 104.4 hours segmented in utterances of at least 6 s.</abstract>
<identifier type="citekey">bougrine-etal-2017-toward</identifier>
<identifier type="doi">10.18653/v1/W17-1317</identifier>
<location>
<url>https://aclanthology.org/W17-1317/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>138</start>
<end>146</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Toward a Web-based Speech Corpus for Algerian Dialectal Arabic Varieties
%A Bougrine, Soumia
%A Chorana, Aicha
%A Lakhdari, Abdallah
%A Cherroun, Hadda
%Y Habash, Nizar
%Y Diab, Mona
%Y Darwish, Kareem
%Y El-Hajj, Wassim
%Y Al-Khalifa, Hend
%Y Bouamor, Houda
%Y Tomeh, Nadi
%Y El-Haj, Mahmoud
%Y Zaghouani, Wajdi
%S Proceedings of the Third Arabic Natural Language Processing Workshop
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F bougrine-etal-2017-toward
%X The success of machine learning for automatic speech processing has raised the need for large scale datasets. However, collecting such data is often a challenging task as it implies significant investment involving time and money cost. In this paper, we devise a recipe for building largescale Speech Corpora by harnessing Web resources namely YouTube, other Social Media, Online Radio and TV. We illustrate our methodology by building KALAM‘DZ, An Arabic Spoken corpus dedicated to Algerian dialectal varieties. The preliminary version of our dataset covers all major Algerian dialects. In addition, we make sure that this material takes into account numerous aspects that foster its richness. In fact, we have targeted various speech topics. Some automatic and manual annotations are provided. They gather useful information related to the speakers and sub-dialect information at the utterance level. Our corpus encompasses the 8 major Algerian Arabic sub-dialects with 4881 speakers and more than 104.4 hours segmented in utterances of at least 6 s.
%R 10.18653/v1/W17-1317
%U https://aclanthology.org/W17-1317/
%U https://doi.org/10.18653/v1/W17-1317
%P 138-146
Markdown (Informal)
[Toward a Web-based Speech Corpus for Algerian Dialectal Arabic Varieties](https://aclanthology.org/W17-1317/) (Bougrine et al., WANLP 2017)
ACL