@inproceedings{buraya-etal-2017-towards,
title = "Towards Never Ending Language Learning for Morphologically Rich Languages",
author = "Buraya, Kseniya and
Pivovarova, Lidia and
Budkov, Sergey and
Filchenkov, Andrey",
editor = "Erjavec, Toma{\v{z}} and
Piskorski, Jakub and
Pivovarova, Lidia and
{\v{S}}najder, Jan and
Steinberger, Josef and
Yangarber, Roman",
booktitle = "Proceedings of the 6th Workshop on {B}alto-{S}lavic Natural Language Processing",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-1417",
doi = "10.18653/v1/W17-1417",
pages = "108--118",
abstract = "This work deals with ontology learning from unstructured Russian text. We implement one of components Never Ending Language Learner and introduce the algorithm extensions aimed to gather specificity of morphologicaly rich free-word-order language. We demonstrate that this method may be successfully applied to Russian data. In addition we perform several additional experiments comparing different settings of the training process. We demonstrate that utilizing of morphological features significantly improves the system precision while using of seed patterns helps to improve the coverage.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="buraya-etal-2017-towards">
<titleInfo>
<title>Towards Never Ending Language Learning for Morphologically Rich Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kseniya</namePart>
<namePart type="family">Buraya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lidia</namePart>
<namePart type="family">Pivovarova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sergey</namePart>
<namePart type="family">Budkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrey</namePart>
<namePart type="family">Filchenkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Workshop on Balto-Slavic Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tomaž</namePart>
<namePart type="family">Erjavec</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jakub</namePart>
<namePart type="family">Piskorski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lidia</namePart>
<namePart type="family">Pivovarova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Šnajder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Steinberger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Yangarber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work deals with ontology learning from unstructured Russian text. We implement one of components Never Ending Language Learner and introduce the algorithm extensions aimed to gather specificity of morphologicaly rich free-word-order language. We demonstrate that this method may be successfully applied to Russian data. In addition we perform several additional experiments comparing different settings of the training process. We demonstrate that utilizing of morphological features significantly improves the system precision while using of seed patterns helps to improve the coverage.</abstract>
<identifier type="citekey">buraya-etal-2017-towards</identifier>
<identifier type="doi">10.18653/v1/W17-1417</identifier>
<location>
<url>https://aclanthology.org/W17-1417</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>108</start>
<end>118</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Never Ending Language Learning for Morphologically Rich Languages
%A Buraya, Kseniya
%A Pivovarova, Lidia
%A Budkov, Sergey
%A Filchenkov, Andrey
%Y Erjavec, Tomaž
%Y Piskorski, Jakub
%Y Pivovarova, Lidia
%Y Šnajder, Jan
%Y Steinberger, Josef
%Y Yangarber, Roman
%S Proceedings of the 6th Workshop on Balto-Slavic Natural Language Processing
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F buraya-etal-2017-towards
%X This work deals with ontology learning from unstructured Russian text. We implement one of components Never Ending Language Learner and introduce the algorithm extensions aimed to gather specificity of morphologicaly rich free-word-order language. We demonstrate that this method may be successfully applied to Russian data. In addition we perform several additional experiments comparing different settings of the training process. We demonstrate that utilizing of morphological features significantly improves the system precision while using of seed patterns helps to improve the coverage.
%R 10.18653/v1/W17-1417
%U https://aclanthology.org/W17-1417
%U https://doi.org/10.18653/v1/W17-1417
%P 108-118
Markdown (Informal)
[Towards Never Ending Language Learning for Morphologically Rich Languages](https://aclanthology.org/W17-1417) (Buraya et al., BSNLP 2017)
ACL