@inproceedings{simko-etal-2017-uszeged,
title = "{US}zeged: Identifying Verbal Multiword Expressions with {POS} Tagging and Parsing Techniques",
author = "Simk{\'o}, Katalin Ilona and
Kov{\'a}cs, Vikt{\'o}ria and
Vincze, Veronika",
editor = "Markantonatou, Stella and
Ramisch, Carlos and
Savary, Agata and
Vincze, Veronika",
booktitle = "Proceedings of the 13th Workshop on Multiword Expressions ({MWE} 2017)",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-1705",
doi = "10.18653/v1/W17-1705",
pages = "48--53",
abstract = "The paper describes our system submitted for the Workshop on Multiword Expressions{'} shared task on automatic identification of verbal multiword expressions. It uses POS tagging and dependency parsing to identify single- and multi-token verbal MWEs in text. Our system is language independent and competed on nine of the eighteen languages. Our paper describes how our system works and gives its error analysis for the languages it was submitted for.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="simko-etal-2017-uszeged">
<titleInfo>
<title>USzeged: Identifying Verbal Multiword Expressions with POS Tagging and Parsing Techniques</title>
</titleInfo>
<name type="personal">
<namePart type="given">Katalin</namePart>
<namePart type="given">Ilona</namePart>
<namePart type="family">Simkó</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Viktória</namePart>
<namePart type="family">Kovács</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronika</namePart>
<namePart type="family">Vincze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stella</namePart>
<namePart type="family">Markantonatou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agata</namePart>
<namePart type="family">Savary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronika</namePart>
<namePart type="family">Vincze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper describes our system submitted for the Workshop on Multiword Expressions’ shared task on automatic identification of verbal multiword expressions. It uses POS tagging and dependency parsing to identify single- and multi-token verbal MWEs in text. Our system is language independent and competed on nine of the eighteen languages. Our paper describes how our system works and gives its error analysis for the languages it was submitted for.</abstract>
<identifier type="citekey">simko-etal-2017-uszeged</identifier>
<identifier type="doi">10.18653/v1/W17-1705</identifier>
<location>
<url>https://aclanthology.org/W17-1705</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>48</start>
<end>53</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T USzeged: Identifying Verbal Multiword Expressions with POS Tagging and Parsing Techniques
%A Simkó, Katalin Ilona
%A Kovács, Viktória
%A Vincze, Veronika
%Y Markantonatou, Stella
%Y Ramisch, Carlos
%Y Savary, Agata
%Y Vincze, Veronika
%S Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017)
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F simko-etal-2017-uszeged
%X The paper describes our system submitted for the Workshop on Multiword Expressions’ shared task on automatic identification of verbal multiword expressions. It uses POS tagging and dependency parsing to identify single- and multi-token verbal MWEs in text. Our system is language independent and competed on nine of the eighteen languages. Our paper describes how our system works and gives its error analysis for the languages it was submitted for.
%R 10.18653/v1/W17-1705
%U https://aclanthology.org/W17-1705
%U https://doi.org/10.18653/v1/W17-1705
%P 48-53
Markdown (Informal)
[USzeged: Identifying Verbal Multiword Expressions with POS Tagging and Parsing Techniques](https://aclanthology.org/W17-1705) (Simkó et al., MWE 2017)
ACL