@inproceedings{klyueva-etal-2017-neural,
title = "Neural Networks for Multi-Word Expression Detection",
author = "Klyueva, Natalia and
Doucet, Antoine and
Straka, Milan",
editor = "Markantonatou, Stella and
Ramisch, Carlos and
Savary, Agata and
Vincze, Veronika",
booktitle = "Proceedings of the 13th Workshop on Multiword Expressions ({MWE} 2017)",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-1707",
doi = "10.18653/v1/W17-1707",
pages = "60--65",
abstract = "In this paper we describe the MUMULS system that participated to the 2017 shared task on automatic identification of verbal multiword expressions (VMWEs). The MUMULS system was implemented using a supervised approach based on recurrent neural networks using the open source library TensorFlow. The model was trained on a data set containing annotated VMWEs as well as morphological and syntactic information. The MUMULS system performed the identification of VMWEs in 15 languages, it was one of few systems that could categorize VMWEs type in nearly all languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="klyueva-etal-2017-neural">
<titleInfo>
<title>Neural Networks for Multi-Word Expression Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Klyueva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Doucet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milan</namePart>
<namePart type="family">Straka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stella</namePart>
<namePart type="family">Markantonatou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agata</namePart>
<namePart type="family">Savary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronika</namePart>
<namePart type="family">Vincze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we describe the MUMULS system that participated to the 2017 shared task on automatic identification of verbal multiword expressions (VMWEs). The MUMULS system was implemented using a supervised approach based on recurrent neural networks using the open source library TensorFlow. The model was trained on a data set containing annotated VMWEs as well as morphological and syntactic information. The MUMULS system performed the identification of VMWEs in 15 languages, it was one of few systems that could categorize VMWEs type in nearly all languages.</abstract>
<identifier type="citekey">klyueva-etal-2017-neural</identifier>
<identifier type="doi">10.18653/v1/W17-1707</identifier>
<location>
<url>https://aclanthology.org/W17-1707</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>60</start>
<end>65</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Networks for Multi-Word Expression Detection
%A Klyueva, Natalia
%A Doucet, Antoine
%A Straka, Milan
%Y Markantonatou, Stella
%Y Ramisch, Carlos
%Y Savary, Agata
%Y Vincze, Veronika
%S Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017)
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F klyueva-etal-2017-neural
%X In this paper we describe the MUMULS system that participated to the 2017 shared task on automatic identification of verbal multiword expressions (VMWEs). The MUMULS system was implemented using a supervised approach based on recurrent neural networks using the open source library TensorFlow. The model was trained on a data set containing annotated VMWEs as well as morphological and syntactic information. The MUMULS system performed the identification of VMWEs in 15 languages, it was one of few systems that could categorize VMWEs type in nearly all languages.
%R 10.18653/v1/W17-1707
%U https://aclanthology.org/W17-1707
%U https://doi.org/10.18653/v1/W17-1707
%P 60-65
Markdown (Informal)
[Neural Networks for Multi-Word Expression Detection](https://aclanthology.org/W17-1707) (Klyueva et al., MWE 2017)
ACL
- Natalia Klyueva, Antoine Doucet, and Milan Straka. 2017. Neural Networks for Multi-Word Expression Detection. In Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017), pages 60–65, Valencia, Spain. Association for Computational Linguistics.