@inproceedings{scholivet-ramisch-2017-identification,
title = "Identification of Ambiguous Multiword Expressions Using Sequence Models and Lexical Resources",
author = "Scholivet, Manon and
Ramisch, Carlos",
editor = "Markantonatou, Stella and
Ramisch, Carlos and
Savary, Agata and
Vincze, Veronika",
booktitle = "Proceedings of the 13th Workshop on Multiword Expressions ({MWE} 2017)",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-1723",
doi = "10.18653/v1/W17-1723",
pages = "167--175",
abstract = "We present a simple and efficient tagger capable of identifying highly ambiguous multiword expressions (MWEs) in French texts. It is based on conditional random fields (CRF), using local context information as features. We show that this approach can obtain results that, in some cases, approach more sophisticated parser-based MWE identification methods without requiring syntactic trees from a treebank. Moreover, we study how well the CRF can take into account external information coming from a lexicon.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="scholivet-ramisch-2017-identification">
<titleInfo>
<title>Identification of Ambiguous Multiword Expressions Using Sequence Models and Lexical Resources</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manon</namePart>
<namePart type="family">Scholivet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stella</namePart>
<namePart type="family">Markantonatou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agata</namePart>
<namePart type="family">Savary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronika</namePart>
<namePart type="family">Vincze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a simple and efficient tagger capable of identifying highly ambiguous multiword expressions (MWEs) in French texts. It is based on conditional random fields (CRF), using local context information as features. We show that this approach can obtain results that, in some cases, approach more sophisticated parser-based MWE identification methods without requiring syntactic trees from a treebank. Moreover, we study how well the CRF can take into account external information coming from a lexicon.</abstract>
<identifier type="citekey">scholivet-ramisch-2017-identification</identifier>
<identifier type="doi">10.18653/v1/W17-1723</identifier>
<location>
<url>https://aclanthology.org/W17-1723</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>167</start>
<end>175</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identification of Ambiguous Multiword Expressions Using Sequence Models and Lexical Resources
%A Scholivet, Manon
%A Ramisch, Carlos
%Y Markantonatou, Stella
%Y Ramisch, Carlos
%Y Savary, Agata
%Y Vincze, Veronika
%S Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017)
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F scholivet-ramisch-2017-identification
%X We present a simple and efficient tagger capable of identifying highly ambiguous multiword expressions (MWEs) in French texts. It is based on conditional random fields (CRF), using local context information as features. We show that this approach can obtain results that, in some cases, approach more sophisticated parser-based MWE identification methods without requiring syntactic trees from a treebank. Moreover, we study how well the CRF can take into account external information coming from a lexicon.
%R 10.18653/v1/W17-1723
%U https://aclanthology.org/W17-1723
%U https://doi.org/10.18653/v1/W17-1723
%P 167-175
Markdown (Informal)
[Identification of Ambiguous Multiword Expressions Using Sequence Models and Lexical Resources](https://aclanthology.org/W17-1723) (Scholivet & Ramisch, MWE 2017)
ACL