@inproceedings{buljan-snajder-2017-combining,
title = "Combining Linguistic Features for the Detection of {C}roatian Multiword Expressions",
author = "Buljan, Maja and
{\v{S}}najder, Jan",
editor = "Markantonatou, Stella and
Ramisch, Carlos and
Savary, Agata and
Vincze, Veronika",
booktitle = "Proceedings of the 13th Workshop on Multiword Expressions ({MWE} 2017)",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-1727/",
doi = "10.18653/v1/W17-1727",
pages = "194--199",
abstract = "As multiword expressions (MWEs) exhibit a range of idiosyncrasies, their automatic detection warrants the use of many different features. Tsvetkov and Wintner (2014) proposed a Bayesian network model that combines linguistically motivated features and also models their interactions. In this paper, we extend their model with new features and apply it to Croatian, a morphologically complex and a relatively free word order language, achieving a satisfactory performance of 0.823 F1-score. Furthermore, by comparing against (semi)naive Bayes models, we demonstrate that manually modeling feature interactions is indeed important. We make our annotated dataset of Croatian MWEs freely available."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="buljan-snajder-2017-combining">
<titleInfo>
<title>Combining Linguistic Features for the Detection of Croatian Multiword Expressions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maja</namePart>
<namePart type="family">Buljan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Šnajder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stella</namePart>
<namePart type="family">Markantonatou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Agata</namePart>
<namePart type="family">Savary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronika</namePart>
<namePart type="family">Vincze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>As multiword expressions (MWEs) exhibit a range of idiosyncrasies, their automatic detection warrants the use of many different features. Tsvetkov and Wintner (2014) proposed a Bayesian network model that combines linguistically motivated features and also models their interactions. In this paper, we extend their model with new features and apply it to Croatian, a morphologically complex and a relatively free word order language, achieving a satisfactory performance of 0.823 F1-score. Furthermore, by comparing against (semi)naive Bayes models, we demonstrate that manually modeling feature interactions is indeed important. We make our annotated dataset of Croatian MWEs freely available.</abstract>
<identifier type="citekey">buljan-snajder-2017-combining</identifier>
<identifier type="doi">10.18653/v1/W17-1727</identifier>
<location>
<url>https://aclanthology.org/W17-1727/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>194</start>
<end>199</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Combining Linguistic Features for the Detection of Croatian Multiword Expressions
%A Buljan, Maja
%A Šnajder, Jan
%Y Markantonatou, Stella
%Y Ramisch, Carlos
%Y Savary, Agata
%Y Vincze, Veronika
%S Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017)
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F buljan-snajder-2017-combining
%X As multiword expressions (MWEs) exhibit a range of idiosyncrasies, their automatic detection warrants the use of many different features. Tsvetkov and Wintner (2014) proposed a Bayesian network model that combines linguistically motivated features and also models their interactions. In this paper, we extend their model with new features and apply it to Croatian, a morphologically complex and a relatively free word order language, achieving a satisfactory performance of 0.823 F1-score. Furthermore, by comparing against (semi)naive Bayes models, we demonstrate that manually modeling feature interactions is indeed important. We make our annotated dataset of Croatian MWEs freely available.
%R 10.18653/v1/W17-1727
%U https://aclanthology.org/W17-1727/
%U https://doi.org/10.18653/v1/W17-1727
%P 194-199
Markdown (Informal)
[Combining Linguistic Features for the Detection of Croatian Multiword Expressions](https://aclanthology.org/W17-1727/) (Buljan & Šnajder, MWE 2017)
ACL