@inproceedings{enger-etal-2017-open,
title = "An open-source tool for negation detection: a maximum-margin approach",
author = "Enger, Martine and
Velldal, Erik and
{\O}vrelid, Lilja",
editor = "Blanco, Eduardo and
Morante, Roser and
Saur{\'\i}, Roser",
booktitle = "Proceedings of the Workshop Computational Semantics Beyond Events and Roles",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-1810",
doi = "10.18653/v1/W17-1810",
pages = "64--69",
abstract = "This paper presents an open-source toolkit for negation detection. It identifies negation cues and their corresponding scope in either raw or parsed text using maximum-margin classification. The system design draws on best practice from the existing literature on negation detection, aiming for a simple and portable system that still achieves competitive performance. Pre-trained models and experimental results are provided for English.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="enger-etal-2017-open">
<titleInfo>
<title>An open-source tool for negation detection: a maximum-margin approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martine</namePart>
<namePart type="family">Enger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Velldal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lilja</namePart>
<namePart type="family">Øvrelid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop Computational Semantics Beyond Events and Roles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roser</namePart>
<namePart type="family">Morante</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roser</namePart>
<namePart type="family">Saurí</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents an open-source toolkit for negation detection. It identifies negation cues and their corresponding scope in either raw or parsed text using maximum-margin classification. The system design draws on best practice from the existing literature on negation detection, aiming for a simple and portable system that still achieves competitive performance. Pre-trained models and experimental results are provided for English.</abstract>
<identifier type="citekey">enger-etal-2017-open</identifier>
<identifier type="doi">10.18653/v1/W17-1810</identifier>
<location>
<url>https://aclanthology.org/W17-1810</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>64</start>
<end>69</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An open-source tool for negation detection: a maximum-margin approach
%A Enger, Martine
%A Velldal, Erik
%A Øvrelid, Lilja
%Y Blanco, Eduardo
%Y Morante, Roser
%Y Saurí, Roser
%S Proceedings of the Workshop Computational Semantics Beyond Events and Roles
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F enger-etal-2017-open
%X This paper presents an open-source toolkit for negation detection. It identifies negation cues and their corresponding scope in either raw or parsed text using maximum-margin classification. The system design draws on best practice from the existing literature on negation detection, aiming for a simple and portable system that still achieves competitive performance. Pre-trained models and experimental results are provided for English.
%R 10.18653/v1/W17-1810
%U https://aclanthology.org/W17-1810
%U https://doi.org/10.18653/v1/W17-1810
%P 64-69
Markdown (Informal)
[An open-source tool for negation detection: a maximum-margin approach](https://aclanthology.org/W17-1810) (Enger et al., SemBEaR 2017)
ACL