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Biomedical natural language processing in 2017:
The view from computational linguistics

Kevin Bretonnel Cohen, Dina Demner-Fushman,
Sophia Ananiadou, and Jun-ichi Tsujii

According to the Association for Computational Linguistics guidelines on special interest groups (SIGs),
The function of a SIG is to encourage interest and activity in specific areas within the ACL’s field[1]. Is
the SIGBioMed special interest group “within the ACL’s field”? The titles of this year’s papers suggest
that it is, in that the current interest in deep learning in its many and varied manifestations is mirrored in
those titles. Do those papers cover a specific area? They do, and in doing so, they demonstrate one of
the great satisfactions of working in biomedical natural language processing.

One of the joys of involvement in the biomedical natural language processing community is seeing
the development of research with clinical applications. As examples of such work being presented at
BioNLP 2017, we would like to point out the two papers that discuss the application of natural language
processing to the diagnosis of neurological disorders. Bhatia et al.[2] describe an approach to using
speech processing in the assessment of patients with amyotrophic lateral sclerosis (also known as Lou
Gehrig’s disease), one of the more horrific motor neuron diseases. Good assessment of amyotrophic
lateral sclerosis patients is important for a number of reasons, including the fact that accurate tracking
of the inevitable deterioration that is a hallmark of this disease gives patients and their families the
possibility of purposeful planning for the attendant disability and death. However, current methodologies
for evaluating the status of amyotrophic lateral sclerosis patients necessarily involve expensive equipment
and highly trained personnel; when further developed, this methodology could make such evaluation
much more, and more frequently, available to ALS patients. The fact that the work reported here involves
a speech modality is especially exciting, as speech-related indicators of future ALS can be present long
before diagnosis. The paper uses measurements of phonological features of speech and their divergence
from a baseline, and demonstrates correlation with physiological measures.

Adams et al.[3] describe work on detecting and categorizing word production errors associated with
anomia, a particular kind of inability to find words. Screening for anomia is important because anomia
is a symptom of stroke, but it is difficult and time-consuming to do, and therefore is not done as often
as it should be. Automatic detection of anomia could be a nice enabler of improved care for stroke
victims, but it is made difficult due to the subtlety of the phonological and semantic judgments that have
to be made when assessing the phenomenon. The paper uses a combination of language modeling and
phonologically-based edit distance calculation to approach the task, applying these techniques to data
from the AphasiaBank collection of transcribed aphasic and healthy speech.

Although we have summarized only these two examples that address neurological disorders, there are
several other papers on the use of natural language processing in clinical applications: patient-produced
content in dementia [4], and health records ([5] on sepsis, [6] on e-cig use, [7] on pain and confusion);
in the aggregate, these papers illustrate very nicely the potential for natural language processing to
contribute to human well-being. Additionally, the current interest in the potential of natural language
processing for social media is reflected in papers on studying medication intake via Twitter [8] and on
monitoring dementia via blog posts [9]. Linguistics and language resources are represented in this year’s
papers, as well, including work on comparative structures [10] and a corpus construction effort [11].

The work in biomedical NLP was dominated by applications of deep learning to: punctuation restoration
[12], text classification [13], relation extraction [14], [15], [16], information retrieval [17], and similarity
judgments [18], among other exciting progress in biomedical language processing.

These are just a few examples of the high-quality research presented in BioNLP 2017.
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In addition to the excellent submissions to the BioNLP workshop, this year features equally strong
submissions to BioASQ challenge on large-scale biomedical semantic indexing and question answering,
a shared task affiliated with BioNLP 2017. This year, the BioASQ challenge, which started in 2013, had
three tasks:

e Large-Scale Online Biomedical Semantic Indexing
e Biomedical Semantic Question Answering
e Funding Information Extraction From Biomedical Literature

An overview of the tasks and the results of the challenge [19] are presented in an invited talk. The
invited speaker, George Paliouras, is a senior researcher and head of the Intelligent Information Systems
division of the Institute of Informatics and Telecommunications at NCSR “Demokritos”, Greece. He
holds a PhD in Machine Learning and has performed basic and applied research in Artificial Intelligence
for the last 20 years. He is interested in the development of novel methods for addressing challenging
big and small data analysis problems, such as learning complex models from structured relational data,
learning from noisy and sparse data, learning from multiple heterogeneous data streams, and discovering
patterns in hypergraphs. His research is motivated by the real-world problems. George has contributed to
solving a variety of such problems, ranging from spam filtering and Web personalization to biomedical
information retrieval. He has co-founded the spin-off company em i-sieve Technologies, which provides
online reputation monitoring services.

Among various contributions to the research community, George Paliouras has served as board member
in national and international scientific societies; he is serving on the editorial boards of international
journals, and has chaired international conferences. He is involved in several research projects, in the
role of scientific coordinator/principal investigator in some of them. In particular, he has coordinated and
provided the infrastructure for the BioASQ project that was funded by the European Commission. He is
currently coordinating iASiS, another project funded by the European Commission to develop big data
integration and analysis methods that will provide insight to public health policy-making for personalized
medicine.
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Abstract

We present a system for automatically
detecting and classifying phonologically
anomalous productions in the speech of
individuals with aphasia. Working from
transcribed discourse samples, our system
identifies neologisms, and uses a combina-
tion of string alignment and language mod-
els to produce a lattice of plausible words
that the speaker may have intended to pro-
duce. We then score this lattice accord-
ing to various features, and attempt to de-
termine whether the anomalous production
represented a phonemic error or a genuine
neologism. This approach has the potential
to be expanded to consider other types of
paraphasic errors, and could be applied to
awide variety of screening and therapeutic
applications.

1 Introduction

Aphasia is an acquired neurogenic language dis-
order in which an individual’s ability to produce
or comprehend language is compromised. It can
be caused by a number of different underlying
pathologies, but can generally be traced back to
physical damage to the individual’s brain: tissue
damage following ischemic or hemorrhagic stroke,
lesions caused by a traumatic brain injury or infec-
tion, etc. It can also be associated with various neu-
rodegenerative diseases, as in the case of Primary
Progressive Aphasia. According to the National
Institute of Neurological Disorders and Stroke, ap-
proximately 1,000,000 people in the United States
suffer from aphasia, and aphasia is a common con-
sequence of strokes (prevalence estimates for apha-
sia among stroke patients vary, but are typically in
the neighborhood of 30% (Engelter et al., 2006)).

1

Anomia is a the inability to access and re-
trieve words during language production, and is a
common manifestation of aphasia (Goodglass and
Wingfield, 1997). An anomic individual will ex-
perience difficulty producing words and naming
items, which can cause substantial difficulties in
day-to-day communication.

The process of screening for, diagnosing, and
assessing anomia is typically manual in nature,
and requires substantial time, labor, and exper-
tise. Compared to other neuropsychological as-
sessment instruments, aphasia-related assessments
are particularly difficult to computerize, as they
typically depend on subtle and complex linguis-
tic judgments about the phonological and semantic
similarity of words, and also require the examiner
to interpret phonologically disordered speech. Fur-
thermore, the most commonly used assessments fo-
cus for practical reasons on relatively constrained
tasks such as picture naming, which may lack eco-
logical validity (Mayer and Murray, 2003).

In this work, we describe an approach to au-
tomatically detecting and analyzing certain cate-
gories of word production errors characteristic of
anomia in connected speech. Our approach is a
first step towards an automated anomia assessment
tool that could be used cost effectively in both
clinical and research settings,! and could also be
applied to other disorders of speech production.
The method we propose uses statistical language
models to identify possible errors, and employs a
phonologically-informed edit distance model to de-
termine phonological similarity between the sub-
ject’s utterance and a set of plausible “intended
words.” We then apply machine learning tech-
niques to determine which of several categories
a given erroneous production may fall into. We

'As in the computer-administered (but manually-scored)
assessments developed by Fergadiotis and colleagues (Ferga-
diotis et al., 2015; Hula et al., 2015).
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show results on intrinsic evaluations comparable
to state-of-the-art sentence completion, as well as
an extrinsic measure of classification well above a
“most-frequent” baseline strategy.

1.1 Anomia and Paraphasias

Anomia can take several different forms, but in this
work we are concerned with paraphasias, which
are unintended errors in word production.’

There are several categories of paraphasic error.
Semantic errors arise when an individual uninten-
tionally produces a semantically-related word to
their original, intended word (their “target word”).
A classic semantic error would be saying “cat”
when one intended to say “dog.”

Phonemic (sometimes called “formal”) errors
occur when the speaker produces an unrelated
word that is phonemically related to their target:
“mat” for “cat”, for example. It is also possible for
an erroneous production to be mixed, that is both
semantically and phonemically related to the tar-
get word: “rat” for “cat.” Individuals with anomia
also produce unrelated errors, which are words
that are neither semantically or phonemically re-
lated to their intended target word: for example,
producing “skis” instead of “zipper.”

Each of these categories shares the commonal-
ity that the word produced by the individual is a
“real” word. There is another family of anomic er-
rors, neologisms, in which the individual produces
non-word productions. A neologistic production
may be phonemically related to the target, but con-
taining phonological errors: “[damowso1]” for “di-
nosaur.” These are often referred to as phonologi-
cal paraphasias. Alternatively, the individual may
produce abstruse neologisms, in which the pro-
duced phonemes bear no discernable similarity to
any “real” lexical item (“[apmoal]” for “comb’?).

The present work focuses exclusively on neol-
ogisms, both of the phonological variety as well
as the abstruse variety. However, our fundamental
approach can be extended to include other forms,

*Note that individuals without any sort of language dis-
order do occasionally produce errors in their speech; this
fact has led to a truly shocking amount of study by linguists.
Frisch & Wright (2002) provide a reasonable overview of the
background and phonology of the phenomenon.

3This example was taken from a corpus of responses to a
confrontation naming test (Mirman et al., 2010), in which the
subject is shown a picture and required to name its contents.
As such, in the case of this specific error, we have a priori
knowledge of what the target word “should” have been. Ob-
viously, in a more naturalistic task or setting, we would not
have this advantage.

as described in section 6.

Typical methods of diagnosing, staging, and oth-
erwise characterizing anomia involve determining
the number and kinds of paraphasias produced by
an individual while undergoing some structured
language elicitation process, for example a con-
frontation naming test (see (Kendall et al., 2013)
and (Brookshire et al., 2014) for examples of such
astudy). As alluded to previously, producing these
counts and classifications is a complex and labori-
ous process. Furthermore, it is also often an in-
herently subjective process: are “carrot” and “ba-
nana” semantically related? What about “hose”
and “rope”?

Reliability estimates of expert human perfor-
mance at paraphasia classification in confronta-
tion naming scenarios reflect the difficulty in this
task. One recent study reported a kappa-equivalent
score of 0.76 — a score that that is certainly ac-
ceptable, but that leaves much room for disagree-
ment on the status of specific erroneous produc-
tions (Minkina et al., 2015). Other reported scores
fall in a similar range (Kristensson et al., 2015), in-
cluding when the productions are from neurotyp-
ical individuals (Nicholas et al., 1989). Automat-
ing this aspect of the task would not only improve
efficiency, but would also decrease scoring vari-
ability. Having a reliable, automated method to
analyze paraphasic errors would also expand the
scope of what is currently possible in terms of as-
sessment methodologies.

Notably, the approach we outline in this paper is
explicitly designed to work on samples of natural,
connected speech. It builds upon previous work by
Fergadiotis et al. (2016) on automated analysis of
errors produced in confrontation naming tests, and
extends it into the realm of naturalistic discourse.
It is our hope that, by enabling automated calcu-
lation of error frequencies and types on narrative
speech, we might make using such material far eas-
ier in practice than it is today.

2 Data

For this work, we use the data set provided by the
AphasiaBank project (MacWhinney et al., 2011),
which has assembled a large database of tran-
scribed interactions between examiners and people
with aphasia, nearly all of whom have suffered a
stroke. Notably, AphasiaBank also includes tran-
scribed sessions with neurotypical controls. Each
interaction follows a common protocol and script,



and is transcribed in great detail using a standard-
ized set of annotation guidelines. The transcripts
include word-level error codes, according to a de-
tailed taxonomy of errors and associated annota-
tions. In the case of semantic, formal, and phone-
mic errors, the word-level annotations include a
“best guess” on the part of the transcriber as to what
the speaker’s intended production may have been.

Each transcribed session consists of a prescribed
sequence of language elicitation activities, includ-
ing a set of personal narratives (e.g.,“Do you re-
member when you had your stroke? Please tell me
about it.”), standardized picture description tasks,
a story retelling task (involving the story of Cin-
derella), and a procedural discourse task.

We noted that the distribution of errors within
sentences seems to obey the power law , with the
majority of error-containing sentences containg-
ing a single error, followed somewhat distantly by
sentences containing two errors, with a relatively
steep dropoff thereafter. For the present study, we
restricted our analysis to sentences that contained
a single error. Our reasoning for this restriction
was that we do not presently have a theoretically-
informed model of what, if any, relationship there
may be between multiple errors within a sentence.
However, it seems quite likely that the errors oc-
curring in a sentence containing (for instance) five
paraphasic errors might be somehow related to one
another. We anticipate exploring this phenomenon
in the future (see section 6).

We chose to restrict our data to the story retelling
task due to the constrained and focused vocabulary
of the Cinderella story. This resulted in ~ 1000
sentences from 385 individuals. We then identi-
fied sentences containing instances of our errors of
interest: phonological paraphasia (AphasiaBank

codes “p:n”, “p:m”) or abstruse neologism (“n:uk”
and “n:k”).
3 Methods

We first tokenized the AphasiaBank data using a
modified version of the Penn Treebank tokenizer
which left contractions as a single word and simply
removed the connecting apostrophe, as these occa-
sionally appear as target words and thus we needed
to treat them as a single token. We left stopwords
intact, and case-folded all sentences to upper-case.
Cardinal numbers were collapsed into a category
token, as were ordinal numbers and dates (each
category was given its own token). The Aphasia-

Bank transcripts include detailed [PA-encoded rep-
resentations of neologistic productions, but any
“real-world” usage scenario for our algorithm is
unlikely to benefit from such high-quality tran-
scription. We therefore translated the non-lexical
productions into a simulated “best-guess” ortho-
graphic representation of the subject’s non-lexical
productions.

We next turned to the question of identifying ne-
ologisms in our sentences. Simply using a stan-
dard dictionary to determine lexicality could re-
sult in numerous “false positives,” driven largely
by proper names of people, brands, etc. To
avoid this, we used the SUBTLEX-US corpus
(Brysbaert and New, 2009) to identify neologisms.
SUBTLEX-US was build using subtitles from
English-language television shows and movies,
and Brysbaert and New have demonstrated that it
correlates with a number of psycholinguistic be-
havior measures (most notably, naming latencies)
better than better-known frequency norms such as
those derived from the Brown corpus or CELEX-
2.

Upon identifying a possible non-word produc-
tion, recall that our next goal is to determine
whether it represents a phonemic error (substi-
tuting “[damowsoir]” for “dinosaur”) or an ab-
struse neologism (a completely novel sequence of
phonemes that does not correspond to an actual
word). To help accomplish this, we train a lan-
guage model to identify plausible words that could
fit in the slot occupied by the erroneous produc-
tion, and produce a lattice of these candidate target
words (i.e., words that the subject may have been
intending to produce, given what we know about
the context in which they were speaking).

Our language models for this study were built us-
ing the New York Times section of the Gigaword
newswire corpus (Parker et al., 2011). After suc-
cess in preliminary experiments, we filtered this
corpus by first training a Latent Dirichlet Alloca-
tion (LDA) topic model on the corpus using Gen-
sim (Rehtifek and Sojka, 2010) over 20 topics. We
then projected the text of each of the Cinderella nar-
rative samples into the resulting topic space, and
calculated the centroids for the narrative task. This
yielded a subset of the larger corpus of New York
Times articles that was “most similar” to the Cin-
derella retellings, and we used these to build our
language models.

We investigated two different language model-



ing approaches: a traditional FST-encoded ngram
language model, and a neural-net based log-
bilinear (LBL) language model. For the FST rep-
resentation, we used the the OpenGrm-NGram
language modeling toolkit (Roark et al., 2012)
and used an n-gram order of 4, with Kneser-Ney
smoothing (Kneser and Ney, 1995). For the LBL
approach, we used a Python implementation* of
the language model described by Mnih and Teh
(Mnih and Teh, 2012). We used word embeddings
of dimension 100, and a 5-gram context window.
In both cases we trained two language models: one
trained on the “task-specific” subset of Gigaword,
and another trained on the AphasiaBank control
data. We combined these with a simple mixing co-
efficient, 1 as shown in Equation 1 where Pgp(w)
is the language model probability of word w com-
puted against the Gigaword corpus and the P45 (w)
is the language model probability trained on the
AphasiaBank controls.

P(W) :ﬂ‘PAB(W)-F(l —i) -Pgw(w) (1)

We evaluate non-lexical productions as fol-
lows. First, we use the Phonetisaurus grapheme-
to-phoneme toolkit (Novak et al., 2012) to trans-
late our orthographic representation into an esti-
mated phoneme sequence. We then calculate a
phonologically-aware edit distance between each
non-word production and every word in our lexi-
con up to some maximum edit distance (in our case
4.0). Phonemes from a related class (e.g. vowels)
are considered lower cost replacements than those
from another class (e.g. unvoiced fricatives). This
gives us a set of candidates which are phonologi-
cally similar to the production.

We next used our language models to produce
lattices representing a set of possible sentences that
the subject could plausibly have been intending to
produce. At the point in the produced sentence
where our error detection system indicated that a
non-word production occurred, we represent the
anomaly by the union of all possible words in our
edit-distance constrained lexicon (see figure 3 for
an example sentence lattice). Finally, we use the
language models to score the resulting sentence lat-
tice so as to be able to rank the candidate words,
and use the estimated sentence-level probability
for each candidate word (i.e., the hypothesized in-
tended utterance featuring that word). Put simply,

*https://github.com/ddahlmeier/neural_lm

Figure 1: An example candidate word lattice for
the production “I can’t move my [vai] hand.”

for each candidate intended word, we produce a
version of the subject’s utterance with that hypoth-
esized word in place of the anomalous utterance,
and score this hypothesized utterance with the lan-
guage model.

At this point in the process, we have the follow-
ing information about each erroneous production:
a best-guess orthographic transcription of what the
individual actually produced, and a ranked list of
plausible words that they could potentially have
been attempting to produce, together with proba-
bility estimates for each hypothesized production.

To determine the category of our error
productions— again, between productions repre-
senting phonological errors such as “[damowso1]”
for “dinosaur”, and productions representing ab-
struse neologisms— we trained a binary classifier
using features representing the characteristics
of the candidate word space surrounding the
erroneous production. Our intuition is that phone-
mic errors were much more likely than abstruse
neologisms to have highly-ranked candidate target
words that were also phonologically similar to the
subject’s actual production.

To capture this, we performed the following pro-
cedure for each error-containing utterance. We
first divide our list of candidate intended words
into buckets by edit distance (0.5, 1.0, 1.5, etc.”).
Each bucket can now be thought of as a ranked
list of probabilities, each representing a possible
hypothesized intended utterance featuring a word
within that bucket’s edit distance of the actual
(anomalous) utterance.

We next represent each bucket with a feature
vector consisting of the count of words in that

SRecall that our phonological edit distance metric allows
for partial costs for related phonological substitutions.



bucket, as well as descriptive statistics regard-
ing the distribution of language model probabil-
ities in that bucket (min, max, etc.). We then
concatenate each bucket’s features together into a
master feature vector for the utterance. Our ex-
pectation is that these features will be relatively
evenly distributed across buckets in the case of ut-
terances containing abstruse neologisms, whereas
utterances featuring phonological paraphasias will
vary according to phonological edit distance.

Once we have computed feature vectors for each
utterance, we used the Scikit-learn Python ma-
chine learning library (Pedregosa et al., 2011) to
train a Support Vector Machine classifier to dis-
tinguish between utterances phonological and ab-
struse neologisms. We evaluate its performance
using leave-one-out cross-validation.

4 Results

We perform two evaluations of our model: an in-
trinsic evaluation of how often our system includes
the target word in the top-» ranked candidates, and
an extrinsic evaluation where we attempt to clas-
sify a paraphasia between phonological errors and
abstruse neologisms.

Our motivation for evaluating our system’s per-
formance on target word prediction is tied to our
classification assumptions. In an ideal case for
a phonological error, the target word should fall
within one of the buckets representing a low edit
distance. If our language model successfully rates
the target as likely, we would see an high maxi-
mum probability within that bucket, which is a fea-
ture in our classifier.

The performance of our language models on
the top-n ranked evaluation can be seen in Table
1. The log-bilinear model outperformed the FST
in all cases. This finding is similar to state of
the art results for automatic sentence completion
systems—particularly for phonemic errors—as we’ll
discuss in greater detail in Section 5. Both systems
did a better job of predicting the target word for
phonemic errors than they did for abstruse neolo-
gisms. It’s not immediately clear what the reason
for this is. However, anecdotally, sentences includ-
ing abstruse neologisms are also often agrammati-
cal.

For the evaluation of our classification, we cre-
ated a simple majority class baseline classifier that
always chooses the largest class of errors (phone-
mic errors in this case). This baseline classifier has

Error n | FST | LBL
Phonemic 1 43 52
Phonemic 51 .54 .66
Phonemic 10 | .59 .69
Phonemic 20 | .67 77
Phonemic 50 .72 .81

Abstruse Neo. 1 29 .35
Abstruse Neo. | 5| .41 49
Abstruse Neo. | 10 | .44 S1
Abstruse Neo. | 20 | .51 .59
Abstruse Neo. | 50 | .54 .60

Table 1: Accuracy of language model predicting
the correct target word within the first # results.

Features ‘ FST ‘ LBL
count, mean 612 | .661
count, mean, max .621 | .680
count, mean, max, min | .610 | .659
count, mean, max, dist. | .610 | .659

Table 2: Classification accuracy by model. Base-
line accuracy of choosing the most common error
type is .510.

a classification accuracy of .51. The results of clas-
sification can be seen in Table 2. Both of our sys-
tems handily outperformed baseline: the FST by
a relative 20% improvement, and the LBL nearly
33%. Aswe expected from the top-n results, classi-
fication based on the LBL outperformed that based
on the FST.

The “dist” feature listed in table 2 is the edit
distance of a given bucket normalized by the num-
ber of phonemes in the actual error production. It
was not found to be productive as a feature, nor
was the minimum language model probability of
words in a given bucket (“min” in the table). The
best results for both systems were a combination of
count of candidate terms per bucket (“count’) con-
catenated with the maximum and mean language
model probabilities within a bucket (“max” and
“min”, respectively).

We varied the mixing-coefficient (1) from Equa-
tion 1 in both the FST and LBL approaches. As
long as the resulting model includes a non-trivial
weighting of the Cinderella corpus (typically any-
thing better than 4 = 3), the actual value of the
mixing coefficient was irrelevant to either of our
evaluations. In this, it appears to work as designed,
with the Gigaword corpus providing background
probabilities, and the AphasiaBank Cinderella con-



trol retellings increasing the weight of topically im-
portant words that are otherwise rare (like “Cin-
derella” and “carriage”).

5 Related Work & Discussion

As far back as Shannon’s word-guessing game
(Shannon, 1951), researchers have sought to lever-
age the statistical regularities in natural language to
predict missing or subsequent words. In practice,
however, this proves to be a surprisingly challeng-
ing problem. Language occurs at levels beyond
simply choosing lexical items, and local statisti-
cal characteristics of language often fail to capture
syntactic and semantic patterns. Zweig & Burges
(2012) provide an enlightening discussion on the
limitations of relying on n-gram guessing for syn-
tactically complex tasks such as “identify the miss-
ing word in the sentence,” and also describe a very
challenging language model evaluation task built
around this problem. They tested a variety of lan-
guage modeling approaches using their task, and
report that well-trained generative n-gram models
achieve correct predictions ~ 30% of the time.
State-of-the-art performance on the their word pre-
diction task using recurrent neural network lan-
gage models,® report highest scores are in the mid-
50% range (Mirowski and Vlachos, 2015; Mnih
and Kavukcuoglu, 2013).

In our case, the nature of our data renders this
task even more challenging. Our sentences are of-
ten short and agrammatical (often missing or mis-
using determiners, for example), and are produced
by individuals with impaired language ability.

As such, our results are actually quite similar to
those reported in recent literature. Our average ac-
curacy of our FST n-gram (over both classes of
errors) selecting the appropriate word is ~ 35%
while our LBL model’s performance of ~ 43%
is comparable to the 5-gram LBL performance
of 49.3 reported by Mnih and Teh on the MSR
Sentence Completion Challenge dataset (Mnih and
Teh, 2012).

6 Conclusion & Future Work

While the system’s performance is quite good on
both intrinsic and extrinsic evaluation, there re-
mains much interesting work left to do on the prob-
lem.

See De Mulder et al. (2015) for a recent review on this
subject.

We currently only evaluate sentences with a sin-
gle error, and more generally have not investigated
whether sentences with multiple errors are differ-
ent from mono-error sentences in terms of error
distribution or structure. However, our approach
should be able to generalize to sentences with ad-
ditional errors, and we will be investigating this in
future work.

Additionally, the AphasiaBank transcripts in-
clude phrasal dependency and part-of-speech tags
which we are currently not using. In future work
we will investigate including these as features in
language modelling, as there is some evidence that
this improves the conceptually related task of con-
textual spellcheck(Fossati and Di Eugenio, 2008).

There is quite a bit of work that can be done
on the language models as well. A more nuanced
approach to topic adaptation is worth investigat-
ing, and we plan to experiment with using non-
newswire corpora. Despite our attempts to focus
the corpus via LDA, there is a major difference be-
tween the written language of the New York Times,
and the spoken dialogue between the aphasic sub-
jects and their clinicians.

The most exciting area for further research is the
inclusion of semantic information in our classifica-
tion. While our topic-specific language model pro-
vides our model with some implicit semantic infor-
mation, a more principled approach to semantic rel-
evance could potentially improve the classification
of phonemic errors versus abstruse neologisms by
determining whether a given candidate word is se-
mantically relevant in context. More intriguingly,
it would give us a way to start investigating se-
mantic errors, and those errors that include “real”
words (for example, the previously discussed error
of replacing “dog” with “cat”).

One major limitation of our current system is
its reliance on human-produced transcriptions of
speech samples. In practice, transcription is rarely
feasible in clinical settings, and even in research
settings is often challenging, which may seem
to limit the applicability of our approach. No-
tably, however, our system does not require de-
tailed phonetic transcription, and merely requires
“best-guess” orthographic transcription of neolo-
gisms. As such, one could in principle use au-
tomatic speech recognition (ASR) to analyze a
recording of a patient or research subject, and pro-
duce a transcript on which our methods could be



run.” Fraser et al. (2015) have had some success
at applying ASR to samples of aphasic speech and
performing downstream analysis on the resulting
transcripts, and we anticipate experimenting with
similar techniques in the future.
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Abstract

We propose a novel attention mecha-
nism for a Convolutional Neural Net-
work (CNN)-based Drug-Drug Interaction
(DDI) extraction model. CNNs have been
shown to have a great potential on DDI ex-
traction tasks; however, attention mecha-
nisms, which emphasize important words
in the sentence of a target-entity pair, have
not been investigated with the CNNs de-
spite the fact that attention mechanisms
are shown to be effective for a general do-
main relation classification task. We eval-
uated our model on the Task 9.2 of the
DDIExtraction-2013 shared task. As a re-
sult, our attention mechanism improved
the performance of our base CNN-based
DDI model, and the model achieved an
F-score of 69.12%, which is competitive
with the state-of-the-art models.

1 Introduction

When drugs are concomitantly administered to
patients, the effects of the drugs may be en-
hanced or weakened, which may cause side ef-
fects. These kinds of interactions are called Drug-
Drug Interactions (DDIs). Several drug databases,
such as DrugBank (Law et al., 2014), Therapeu-
tic Target Database (Yang et al., 2016), and Phar-
mGKB (Thorn et al., 2013), have been provided
to summarize drug and DDI information for re-
searchers and professionals; however, many newly
discovered or rarely reported interactions are not
covered in the databases, and they are still buried
in biomedical texts. Therefore, studies on auto-
matic DDI extraction that extract DDIs from texts
are expected to support maintenance of databases
with high coverage and quick update to help med-
ical experts deepen their understanding of DDIs.
For the DDI extraction, deep neural network-
based methods have recently drawn a considerable
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attention (Liu et al., 2016; Zhao et al., 2016; Sahu
and Anand, 2017). Deep neural networks have
been widely used in the NLP field. They show
high performance on several NLP tasks without
requiring manual feature engineering. Convolu-
tional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) are often employed for
the network architectures. Among these, CNNs
have an advantage that they can be easily paral-
lelized and the calculation is thus fast with recent
Graphical Processing Units (GPUs).

Liu et al. (2016) showed that CNN-based model
can achieve a high accuracy on the task of DDI
extraction. Sahu and Anand (2017) proposed an
RNN-based model with attention mechanism to
tackle the DDI extraction task and show the state-
of-the-art performance. The integration of an at-
tention mechanism into a CNN-based relation ex-
traction is proposed by Wang et al. (2016). This
is applied to a general domain relation extrac-
tion task SemEval 2010 Task 8 (Hendrickx et al.,
2009). Their model showed the state-of-the-art
performance on the task. CNNs with attention
mechanisms, however, are not evaluated on the
task of DDI extraction.

In this study, we propose a novel attention
mechanism that is integrated into a CNN-based
DDI extraction model. The attention mecha-
nism extends attention mechanism by Wang et al.
(2016) in that it deals with anonymized entities
separately from other words and incorporates a
smoothing parameter. We implement a CNN-
based relation extraction model and integrate the
novel mechanism into the model. We evaluate our
model on the Task 9.2 of the DDIExtraction-2013
shared task (Segura Bedmar et al., 2013).

The contribution of this paper is as follows.
First, this paper proposes a novel attention mech-
anism that can boost the performance on CNN-
based DDI extraction. Second, the DDI extrac-
tion model with the attention mechanism achieves

Proceedings of the BioNLP 2017 workshop, pages 9—18,
Vancouver, Canada, August 4, 2017. (©2017 Association for Computational Linguistics
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Figure 1: Overview of our model

the performance with an F-score of 69.12% that is
competitive with other state-of-the-art DDI extrac-
tion models when we compare the performance
without negative instance filtering (Chowdhury
and Lavelli, 2013).

2 Methods

We propose a novel attention mechanism for a
CNN-based DDI extraction model. We illus-
trate the overview of the proposed DDI extraction
model in Figure 1. The model extracts interactions
from sentences with drugs are given. In this sec-
tion, we first present preprocessing of input sen-
tences. We then introduce the base CNN model
and explain the attention mechanism. Finally, we
explain the training method.

2.1 Preprocessing

Before processing a drug pair in a sentence, we re-
place the mentions of the target drugs in the pair
with “DRUGI” and “DRUG2” according to their
order of appearance. We also replace other men-
tions of drugs with “DRUGOTHER”.

Table 1 shows an example of preprocessing
when an input sentence Exposure to oral S-
ketamine is unaffected by itraconazole but greatly
increased by ticlopidine is given with a target en-
tity pair. By performing preprocessing, it is pos-
sible to prevent the DDI extraction model to be
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specialized for the surface forms of the drugs in
a training data set and to perform DDI extraction
using the information of the whole context.

2.2 Base CNN model

The base CNN model for extracting DDIs is one
by Zeng et al. (2014). In addition to their original
objective function, we employ an ranking-based
objective function by dos Santos et al. (2015). The
model consists of four layers: embedding, convo-
lution, pooling, and prediction layers. We show
the CNN model at the bottom half of Figure 1.

2.2.1 Embedding layer

In the embedding layer, each word in the input
sentence is mapped to a real-valued vector repre-
sentation using an embedding matrix that is ini-
tialized with pre-trained embeddings. Given an
input sentence S = (wy, - ,wy,) with drug en-
tities e; and ey, we first convert each word w; into
a real-valued vector w;’ by an embedding matrix
wemb ¢ Réwx IVl gg follows:
wy’ = Wy, (1)
where d,, is the number of dimensions of the word
embeddings, V is the vocabulary in the training
data set and the pre-trained word embeddings, and
v;” is a one hot vector that represents the index
of word embedding in W™, v¥ thus extracts
the corresponding word embedding from Wem?,



Entity1 Entity2 Preprocessed input sentence
S-ketamine  itraconazole Exposure to oral DRUGI is unaffected by DRUG2 but greatly
increased by DRUGOTHER.
S-ketamine ticlopidine  Exposure to oral DRUGI is unaffected by DRUGOTHER but
greatly increased by DRUG?2.
itraconazole  ticlopidine  Exposure to oral DRUGOTHER is unaffected by DRUGI but

greatly increased by DRUG2.

Table 1: An example of preprocessing on the sentence “Exposure to oral S-ketamine is unaffected by
itraconazole but greatly increased by ticlopidine” for each target pair.

The word embedding matrix W™ is fine-tuned
during training.

We also prepare d,,;,-dimensional word position
embeddings w?, and w?, that correspond to the
relative positioris from first and second target en-
tities, respectively. We concatenate the word em-
bedding w;" and these word position embeddings
wj | and wy, as in the following Equation (2), and
we use the resulting vector as the input to the sub-
sequent convolution layer:

w; = [w}’;wy ;wy,y).

(2)

2.2.2 Convolution layer

We define a weight tensor for convolution as
Wonv eRdex (dw+2duwp) ¥k and we represent the j-
th column of W™ as WISZ”UGR(deerwP)Xk.
Here, d. denotes the number of filters for each
window size, k is a window size, and K is a set
of the window sizes of the filters. We also intro-
duce z; ;. that is concatenated k£ word embeddings:

3)

Zik = ['w[l;—(k—l)/QJ; e ?wE—(k+1)/2J]T'

We apply the convolution to the embedding matrix
as follows:

mijk = f(WET" © zig +0), 4)

where © is an element-wise product, b is the bias
term, and f is the ReLU function defined as:

ifx >0

otherwise.

(&)

2.2.3 Pooling layer

We employ the max pooling (Boureau et al., 2010)
to convert the output of each filter in the convolu-
tion layer into a fixed-size vector as follows:

cr=[Clk, " Cdok], Cik = max My, j . (6)
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We then obtain the d,-dimensional output of this
pooling layer, where d, equals to d. x| K|, by con-
catenating the obtained outputs ¢, for all the win-
dow sizes k1, -+ , ki (€ K):

C=[Chy;. - Chii- -} Cly - @)

2.2.4 Prediction layer

We predict the relation types using the output of
the pooling layer. We first convert ¢ into scores
using a weight matrix WPred ¢ RO*dp;

s = Wrrede,

®)

where o is the total number of relationships to be
classified and s = [s1,- -, S,|. We then employ
the following two different objective functions for
prediction.

Softmax We convert s into the probability of
possible relations p by a softmax function:

__ exp(s))
2rexp (1)
The loss function Lggftmae i defined as in the
Equation (10) when the gold type distribution y
is given. y is a one-hot vector where the proba-
bility of the gold label is 1 and the others are 0.

p:[pb'":po]apj (9)

Lsoftmax = - Z ylogp (10)

Ranking We employ the ranking-based objec-
tive function following dos Santos et al. (2015).
Using the scores s in the Equation (8), the loss is
calculated as follows:

Lyanking = log(1 + exp(y(m™ — Sy))

+log(1 +exp(y(m™ +s.)), (1)

where m™ and m ™ are margins, 7 is a scaling fac-
tor, y is a gold label, and ¢ (# y) is a negative la-
bel with the highest score in 5. We set 7 to 2, m™
to 2.5 and m™ to 0.5 following dos Santos et al.
(2015).
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2.3 Attention mechanism

Our attention mechanism is based on the input at-
tention by Wang et al. (2016)!. The proposed at-
tention mechanism is different from the base one
in that we prepare separate attentions for enti-
ties and we incorporate a bias term to adjust the
smoothness of attentions. We illustrate the atten-
tion mechanism at the upper half of Figure 1.

We define the word index of the first and second
target drug entities in the sentence as e; and eo,
respectively. We also denote by F = {e1,ex} the
set of indices and by j € {1,2} the index of the
entities. We calculate our attentions using these:

Bij = we; - w; (12)
exp (Bi,5) g
ajj = { 2asicnigs PG’ 1f2¢]?(13)
Adrugs otherwise
- wwa, (14)

Here, ag,y4 is an attention parameter for entities
and b, is the bias term. ag;.,4 and b, are tuned
during training. If we set E' to empty and b, to
zero, the attention will be the same as one by Wang
et al. (2016). We incorporate the attentions «; into
the CNN model by replacing the Equation (4) with
the following equation:

mi gk = f(Wi" © 2 ga; +b). (15)
2.4 Training method

We use L2 regularization to avoid over-fitting.
We use the following objective functions L/,
(Lsoftmaz OF Lyanking) bY incorporating the L2
regularization on weights to the Equation (10).

Ly = L + MW || + W™ |5 (16)
+H W)

'"We do not incorporate the attention-based pooling in
Wang et al. (2016). We leave this for future work.

Here, )\ is a regularization parameter and || - ||
denotes the Frobenius norm. We update all the
parameters including the weights We™? W eonv,
and WPTe biases b and b, and the attention pa-
rameter agy,g to minimize L!,. We use the adap-
tive moment estimation (Adam) (Kingma and Ba,
2015) for the optimizer. We randomly shuffle
training data set and divide them into mini-batch
samples in each epoch.

3 Experimental settings

We illustrate the workflow of the DDI extraction
in Figure 2. As preprocessing, we performed word
segmentation of the input sentences using the GE-
NIA tagger (Tsuruoka et al., 2005). In this section,
we explain the settings for the data sets, tasks, ini-
tial embeddings, and hyper-parameter tuning.

3.1 Data set

We used the data set from the DDIExtraction-2013
shared task (SemEval-2013 Task 9) (Segura Bed-
mar et al., 2013; Herrero-Zazo et al., 2013) for the
evaluation. This data set is composed of docu-
ments annotated with drug mentions and their re-
lationships. The data set consists of two parts:
MEDLINE and DrugBank. MEDLINE consists of
abstracts in PubMed articles, and DrugBank con-
sists of the descriptions of drug interactions in the
DrugBank database. This data set annotates the
following four types of interactions.

e Mechanism: A sentence describes phar-
macokinetic mechanisms of a DDI, e.g.,
“Grepafloxacine may inhibit the metabolism
of theobromine.”

e Effect: A sentence represents the effect of a
DDI, e.g., “Methionine may protect against
the ototoxic effects of gentamicin.”



Train Test

DrugBank MEDLINE DrugBank MEDLINE
No. of documents 572 142 158 33
No. of sentences 5,675 1,301 973 326
No. of pairs 26,005 1,787 5,265 451
No. of positive DDIs 3,789 232 884 95
No. of negative DDIs 22,216 1,555 4,381 356
No. of Mechanism pairs 1,257 62 278 24
No. of Effect pairs 1,535 152 298 62
No. of Advice pairs 818 8 214 7
No. of Int pairs 179 10 94 2

Table 2: Statistics for the DDIExtraction-2013 shared task data set

Parameter Value
Word embedding size 200
Word position embeddings size 20
Convolutional window size [3, 4, 5]
Convolutional filter size 100
Initial learning rate 0.001
Mini-batch size 100
L2 regularization parameter 0.0001

Table 3: Hyperparamters

Counts
Sentences 1,404
Pairs 4,998
Mechanism pairs 232
Effect pairs 339
Advice pairs 132
Int pairs 48

Table 4: Statistics of the development data set

e Advice: A sentence represents a recommen-
dation or advice on the concomitant use of
two drugs, e.g., “Alpha-blockers should not
be combined with uroxatral.”

e [nt: A sentence simply represents the occur-
rence of a DDI without any information about
the DDI, e.g., “The interaction of omeprazole
and ketoconazole has established.”

The statistics of the data set is shown in Table 2.
As shown in this table, the number of pairs that
have no interaction (negative pairs) is larger than
that of pairs that have interactions (positive pairs).

3.2 Task settings

We followed the task setting of Task 9.2 in the
DDIExtraction-2013 shared task (SemEval task
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9). The task is to classify a given pair of drugs
into the four interaction types or no interaction.
We evaluated the performance with precision (P),
recall (R), and F-score (F) on each interaction type
as well as micro-averaged precision, recall, and F-
score on all the interaction types. We used the of-
ficial evaluation script provided by the task orga-
nizers and report the averages of 10 runs. Please
note that we took averages of precision, recall and
F-scores individually, so F-scores cannot be calcu-
lated from precision and recall.

3.3 Initializing embeddings

Skip-gram (Mikolov et al., 2013) was employed
for the pre-training of word embeddings. We used
2014 MEDLINE/PubMed baseline distribution,
and the size of vocabulary was 1,630,978. The em-
bedding of the drugs, i.e., “DRUGI”, “DRUG2”
and “DRUGOTHER” are initialized with the pre-
trained embedding of the word “drug”. The em-
beddings of training words that did not appear in
the pre-trained embeddings, as well as the word
position embeddings, are initialized with the ran-
dom values drawn from a uniform distribution and
normalized to unit vectors. Words whose frequen-
cies are one in the training data were replaced with
an “UNK” word during training, and the embed-
ding of words in the test data set that did not ap-
pear in both training and pre-trained embeddings
were set to the embedding of the “UNK” word.

3.4 Hyperparameter tuning

We split the official training data set into two parts:
training and development data sets. We tuned the
hyper-parameters on the development data set on
the softmax model without attentions. Table 3
shows the best hyperparameters on the softmax
model without attentions. We applied the same



Type P (%) R (%) F (%)
Softmax without attention
Mechanism  76.24 (+4.48) 57.58 (+4.41) 65.31 (£1.76)
Effect 67.84 (£3.56) 63.61 (£4.95) 65.39 (+1.38)
Advice 82.26 (£7.04) 66.65 (£9.07) 72.75 (£2.72)
Int 78.99 (£6.87) 33.55(£2.62) 47.05 (+1.71)
All (micro) 73.69 (£3.00) 59.92 (£3.73) 65.93 (£1.21)
Softmax with attention
Mechanism 76.34 (+4.20) 64.43 (£5.72) 67.86 (£4.10)
Effect 66.84 (£3.12) 65.98 (£2.63) 65.58 (+2.09)
Advice 80.98 (£6.14) 70.83 (£2.72) 76.28 (£1.40)
Int 73.21 (£6.30) 38.44 (£9.82) 46.11 (+3.96)

All (micro)

73.74 (£1.88)

63.05 (£1.39)

67.94 (£0.70)

Ranking without attention

Mechanism 78.41 (£3.99) 58.17 (£5.10) 66.51 (£2.61)
Effect 68.16 (£3.30) 65.75 (£3.22) 66.80 (£1.46)
Advice 84.49 (£3.55) 67.14 (£4.68) 74.61 (+1.82)
Int 73.95 (£7.09) 33.43(£1.18) 45.91 (£1.23)
All (micro) 74.79 (£2.41) 60.99 (£2.65) 67.10 (£1.09)
Ranking with attention
Mechanism  80.75 (£2.76) 61.09 (£3.03) 69.45 (£1.45)
Effect 69.73 (£2.64) 66.63 (:2.93) 68.05 (£1.29)
Advice 83.86 (£2.29) 71.81 (£2.61) 77.30 (£1.13)
Int 74.20 (£8.95) 33.02 (£1.40) 45.50 (£1.51)
All (micro) 76.30 (£2.18) 63.25 (+1.71) 69.12 (+£0.71)

Table 5: Performance of softmax/ranking CNN models with and without our attention mechanism. The

highest scores are shown in bold.

hyperparameters to the other models. The statis-
tics of our development data set is shown in Ta-
ble 4. We set the sizes of the convolution windows
to [3, 4, 5] that are the same as in Kim (2014). We
chose the word position embedding size from {10,
20, 30, 40, 50}, the convolutional filter size from
{10, 50, 100, 200}, the learning rate of Adam from
{0.01, 0.001, 0.0001}, the mini-batch size from
{10, 20, 50, 100, 200}, and the L2 regularization
parameter A from {0.01, 0.001, 0.0001, 0.00001}.

4 Results

In this section, we first summarize the perfor-
mance of the proposed models and compare the
performance with existing models. We then com-
pare attention mechanisms and finally illustrate
some results for the analysis of the attentions.

4.1 Performance analysis

The performance of the base CNN models with
two objective functions, as well as with or with-
out the proposed attention mechanism, is summa-
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rized in Table 5. The incorporation of the atten-
tion mechanism improved the F-scores by about
2 percent points (pp) on models with both ob-
jective functions. Both improvements were sta-
tistically significant (p < 0.01) with ¢-test. This
shows that the attention mechanism is effective
for both models. The improvement of F-scores
from the least performing model (softmax objec-
tive function without our attention mechanism)
to the best performing model (ranking objective
function with our attention mechanism) is 3.19 pp
(69.12% versus 65.93%), and this shows both ob-
jective function and attention mechanism are key
to improve the performance. When looking into
the individual types, ranking function with our at-
tention mechanism archived the best F-scores on
Mechanism, Effect, Advice, while the base CNN
model achieved the best F-score on Int.

4.2 Comparison with existing models

We show comparison with the existing state-of-
the-art models in Table 6. We mainly compare



Methods P (%) R(%) F (%)
No negative instance filtering

CNN (Liu et al., 2016) 7529 60.37 67.01

MCCNN (Quan et al., 2016) - - 67.80

SCNN (Zhao et al., 2016) 68.5 61.0 64.5

Joint AB-LSTM (Sahu and Anand, 2017) 71.82 66.90 69.27

Proposed model 7630 63.25 69.12

With negative instance filtering

FBK-irst (Chowdhury and Lavelli, 2013)  64.6 65.6 65.1

Kim et al. (2015) - - 67.0

CNN (Liu et al., 2016) 7572 64.66  69.75

MCCNN (Quan et al., 2016) 75.99 65.25 70.21

SCNN (Zhao et al., 2016) 72.5 65.1 68.6

Joint AB-LSTM (Sahu and Anand, 2017) 73.41 69.66 71.48

Table 6: Comparison with existing models
P (%) R (%) F (%)

No attention 74.79 (£2.41) 60.99 (£2.65) 67.10 (£1.09)
Input attention by Wang et al. (2016) 73.48 (£1.96) 59.58 (£1.51) 65.77 (£0.80)
Our attention 76.30 (£2.66) 63.25(£2.59) 69.12 (£0.71)

Our attention without separate attentions G,y
Our attention without the bias term b,,

74.03 (£2.11)
71.56 (£2.18)

63.30 (£2.41)
64.19 (£2.21)

68.17 (£0.71)
67.62 (£0.96)

Table 7: Comparison of attention mechanisms on CNN models with ranking objective function

the performance without negative instance filter-

tion mechanisms.

We also show the base CNN-

ing, which omits some apparent negative instance
pairs with rules (Chowdhury and Lavelli, 2013),
since we did not incorporate it. We also show the
performance of the existing models with negative
instance filtering for reference.

In the comparison without negative instance fil-
tering, our model outperformed the existing CNN
models (Liu et al., 2016; Quan et al., 2016; Zhao
et al.,, 2016). The model was competitive with
Joint AB-LSTM model (Sahu and Anand, 2017)
that was composed of multiple RNN models.

When considering negative instance filtering,
our model showed lower performance than the
state-of-the-art. However we believe we can get
similar performance with theirs if we incorporate
negative instance filtering. Still, the model outper-
formed several models such as Kim et al. (2015),
Chowdhury and Lavelli (2013) and SCNN model
even if we consider negative instance filtering.

4.3 Comparison of attention mechanisms

We compare the proposed attention mechanism
with the input attention of Wang et al. (2016) to
show the effectiveness of our attention mecha-
nism. Table 7 shows the comparison of the atten-

based model with ranking loss for reference, and
the results of ablation tests. As is shown in the ta-
ble, the attention mechanism by Wang et al. (2016)
did not work in DDI extraction. However, our
attention improved the performance. This result
shows that the proposed extensions are crucial for
modeling attentions in DDI extraction. The abla-
tion test results show that both extensions to our
attention mechanism, i.e., separate attentions for
entities and incorporation of the bias term, are ef-
fective for the task.

4.4 Visual analysis

Figure 3 shows visualization of attentions on
some sentences with DDI pairs using our atten-
tion mechanism. In the first sentence, “DRUGI”
and “DRUG?2” have a Mechanism interaction. The
attention mechanism successfully highlights the
keyword “concentration”. In the second sentence,
which have an Effect interaction, the attention
mechanism put high weights on “increase” and
“effects”. The word “necessary” has a high weight
on the third sentence with an Advice interaction.
For an Int interaction in the last sentence, the word
“interaction” is most highlighted.
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Figure 3: Visualization of attention

5 Related work

Various feature-based methods have been pro-
posed during and after the DDIExtraction-2013
shared task (Segura Bedmar et al., 2013). Bjorne
et al. (2013) tackled with DDI extraction using
Turku Event Extraction System (TEES), which is
an event extraction system based on the Support
Vector Machines (SVMs). Thomas et al. (2013)
and Chowdhury and Lavelli (2013) proposed two-
phase processing models that first detected DDIs
and then classified the extracted DDIs into one of
the four proposed types. Thomas et al. (2013) used
the ensembles of several kernel methods, while
Chowdhury and Lavelli (2013) proposed hybrid
kernel-based approach with negative instance fil-
tering. The negative instance filtering is employed
by all the subsequent models except for ours. Kim
et al. (2015) proposed a two-phase SVM-based
approach that employed a linear SVM with rich
features including word features, word pairs, de-
pendency relations, parse tree structures, and noun
phrase-based constraint features. Our model does
not use features and instead employs CNNs.

Deep learning-based models recently domi-
nated the DDI extraction task. Among these,
CNN-based models have been often employed and
RNNSs has received less attention. Liu et al. (2016)
built a CNN-based model on word embedding and
word position embeddings. Zhao et al. (2016) pro-
posed Syntax CNN (SCNN) that employs syntax
word embeddings with the syntactic information
of a sentence as well as features of POS tags and
dependency trees. Liu et al. (2016) tackled DDI
extraction using Multi-Channel CNN (MCCNN)
that enables the fusion of multiple word embed-
dings. Our work is different from theirs in that we
employed an attention mechanism.

As for RNN-based approach, Sahu and Anand
(2017) proposed an RNN-based model named
Joint AB-LSTM (Long Short-Term Memory).
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Joint AB-LSTM is composed of the concatenation
of two RNN-based models: bidirectional LSTM
(Bi-LSTM) and attentive pooling Bi-LSTM. The
model showed the state-of-the-art performance on
the DDIExtraction-2013 shared task data set. Our
model is a single model with a CNN and attention
mechanism, and it performed comparable to theirs
as shown in Table 6.

Wang et al. (2016) proposed muli-level atten-
tion CNNs and applied it to a general domain rela-
tion classification task SemEval 2010 Task 8 (Hen-
drickx et al., 2009). Their attention mechanism
improved the macro F1 score by 1.9pp (from
86.1% to 88.0%), and their model achieved the
state-of-the-art performance on the task.

6 Conclusions

In this paper, we proposed a novel attention mech-
anism for the extraction of DDIs. We built base
CNN-based DDI extraction models with two dif-
ferent objective functions, softmax and ranking,
and we incorporated the attention mechanism into
the models. We evaluated the performance on the
Task 9.2 of the DDIExtraction-2013 shared task,
and we showed that both attention mechanism and
ranking-based objective function are effective for
the extraction of DDIs. Our final model achieved
an F-score of 69.12% that is competitive with the
state-of-the-art model when we compared the per-
formance without negative instance filtering.

As future work, we would like to incorporate an
attention mechanism in the pooling layer (Wang
et al., 2016) and adopt negative instance filter-
ing (Chowdhury and Lavelli, 2013) for the fur-
ther performance improvement and fair compari-
son with the state-of-the-art methods.
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Abstract

Analogy completion has been a popular
task in recent years for evaluating the se-
mantic properties of word embeddings,
but the standard methodology makes a
number of assumptions about analogies
that do not always hold, either in recent
benchmark datasets or when expanding
into other domains. Through an analy-
sis of analogies in the biomedical domain,
we identify three assumptions: that of a
Single Answer for any given analogy, that
the pairs involved describe the Same Re-
lationship, and that each pair is Informa-
tive with respect to the other. We pro-
pose modifying the standard methodology
to relax these assumptions by allowing for
multiple correct answers, reporting MAP
and MRR in addition to accuracy, and us-
ing multiple example pairs. We further
present BMASS, a novel dataset for eval-
uating linguistic regularities in biomedical
embeddings, and demonstrate that the re-
lationships described in the dataset pose
significant semantic challenges to current
word embedding methods.

1 Introduction

Analogical reasoning has long been a staple of
computational semantics research, as it allows
for evaluating how well implicit semantic re-
lations between pairs of terms are represented
in a semantic model. In particular, the recent
boom of research on learning vector space mod-
els (VSMs) for text (Turney and Pantel, 2010)
has leveraged analogy completion as a standalone
method for evaluating VSMs without using a full
NLP system. This is due largely to the obser-
vations of “linguistic regularities” as linear off-
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sets in context-based semantic models (Mikolov
et al., 2013c; Levy and Goldberg, 2014; Penning-
ton et al., 2014).

In the analogy completion task, a system is pre-
sented with an example term pair and a query, e.g.,
London:England.::Paris: , and the task is to
correctly fill in the blank. Recent methods con-
sider the vector difference between related terms
as representative of the relationship between them,
and use this to find the closest vocabulary term
for a target analogy, e.g., England - London +
Paris ~ France. However, recent analyses re-
veal weaknesses of such offset-based methods, in-
cluding that the use of cosine similarity often re-
duces to just reflecting nearest neighbor structure
(Linzen, 2016), and that there is significant vari-
ance in performance between different kinds of re-
lations (K&per et al., 2015; Gladkova et al., 2016;
Drozd et al., 2016).

We identify three key assumptions encoded in
the standard offset-based methodology for anal-
ogy completion: that a given analogy has only
one correct answer, that all relationships between
the example pair and the query-target pair are the
same, and that the example pair is sufficiently in-
formative with respect to the query-target pair. We
demonstrate that these assumptions are violated
in real-world data, including in existing analogy
datasets. We then propose several modifications
to the standard methodology to relax these as-
sumptions, including allowing for multiple correct
answers, making use of multiple examples when
available, and reporting mean average precision
(MAP) and mean reciprocal rank (MRR) to give
a more complete picture of the implicit ranking
used in finding the best candidate for completing
a given analogy.

Furthermore, we present the BioMedical Ana-
logic Similarity Set (BMASS), a novel dataset for

Proceedings of the BioNLP 2017 workshop, pages 19-28,
Vancouver, Canada, August 4, 2017. (©2017 Association for Computational Linguistics



analogical reasoning in the biomedical domain.
This new resource presents real-world examples
of semantic relations of interest for biomedi-
cal natural language processing research, and we
hope it will support further research into biomed-
ical VSMs (Chiu et al., 2016; Choi et al., 2016).1

2 Related work

Analogical reasoning has been studied both on its
own and as a component of downstream tasks,
using a range of systems. Early work used
rule-based systems for world knowledge (Reit-
man, 1965) and syntactic (Federici and Pirelli,
1997) relationships.  Supervised models were
used for SAT (Scholastic Aptitude Test) analo-
gies (Veale, 2004), and later for synonymy,
antonymy, and some world knowledge (Turney,
2008; Herdagdelen and Baroni, 2009). Analog-
ical reasoning has also been used in support of
downstream tasks, including word sense disam-
biguation (Federici et al., 1997) and morphologi-
cal analysis (Lepage and Goh, 2009; Lavallée and
Langlais, 2010; Soricut and Och, 2015).

Recent work on analogies has largely focused
on their use as an intrinsic evaluation of the prop-
erties of a VSM. The analogy dataset of Mikolov
et al. (2013a), often referred to as the Google
dataset, has become a standard evaluation for
general-domain word embedding models (Pen-
nington et al., 2014; Levy and Goldberg, 2014;
Schnabel et al., 2015; Faruqui et al., 2015), and
includes both world knowledge and morphosyn-
tactic relations. Other datasets include the MSR
analogies (Mikolov et al., 2013c), which describe
morphological relations only; and BATS (Glad-
kova et al., 2016), which includes both morpho-
logical and semantic relations. The semantic rela-
tions from SemEval-2012 Task 2 (Jurgens et al.,
2012) have also been used to derive analogies;
however, as with the lexical Sem-Para dataset
of Koper et al. (2015), the semantic relation-
ships tend to be significantly more challenging for
embedding-based methods (Drozd et al., 2016).
Additionally, Levy et al. (2015b) demonstrate that
even for some lexical relations where embeddings
appear to perform well, they are actually learning
prototypicality as opposed to relatedness.

for
at

"The dataset, and all code used
our experiments, is available online
https://github.com/0OSU-slatelab/BMASS.
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3 Analogy completion task

3.1 Standard methodology

Given an analogy a:b::c:d, the evaluation task is
to guess d out of the vocabulary, given a,b, ¢ as
evidence. Recent methods for this involve using
the vector difference between embedded represen-
tations of the related pairs to rank all terms in the
vocabulary by how well they complete the anal-
ogy, and choosing the best fit. The vector differ-
ence is most commonly used in one of three ways,
where cos is cosine similarity:

argmazgey (cos(d7 b—a+ c)) €))
argmazgecy (cos(d —c,b— a)) 2)
argmazgey cos(d, b)cos(d, c) 3)

cos(d,a) + €

Following the terminology of Levy and Goldberg
(2014), we refer to Equation 1 as 3COSADD,
Equation 2 as PAIRWISEDISTANCE, and Equa-
tion 3 (which is equivalent to 3COSADD with log
cosine similarities) as 3COSMUL.

In order to generate analogy data for this task,
recent datasets have followed a similar process
(Mikolov et al., 2013a,c; Koper et al., 2015; Glad-
kova et al., 2016). First, relations of interest were
manually selected for the target domains: syntac-
tic/morphological, lexical (e.g., hypernymy, syn-
onymy), or semantic (e.g., CapitalOf). Then, for
each relation, example word pairs were manually
selected or automatically generated from existing
resources (e.g., WordNet). The final analogies
were then generated by exhaustively combining
the sets of word pairs within each relation.

3.2 Assumptions

Several key assumptions are inherent in this stan-
dard methodology that are not reflected in recent
benchmark analogy datasets. The first we refer
to as the Single-Target assumption: namely, that
there is a single correct answer for any given anal-
ogy. Since the target d is chosen via argmax, if we
consider the following two analogies:

fluznausea: :fever: ?cough
flurnausea: :fever: ?light-headedness

we must necessarily get at least one answer
wrong. Gladkova et al. (2016) convert these
analogies into a single case:

flu:nausea: :fever: ?[cough, light-headedness]



Pair Relations
" FemaleCounterpart
brother:sister SiblingOf
L FemaleCounterpart
husband:wife MarriedTo

Table 1: Binary semantic relations in “brother is to
sister as husband is to wife.” The target common
relation is shown in bold.

where either cough or lightheadedness is a cor-
rect guess. However, this still misses our desire
to get both correct answers, if possible. Relations
with multiple correct targets are present in all of
Google, BATS, and Sem-Para.

The second key assumption is that all the infor-
mation relating a to b also relates c to d. While the
pairs are chosen based on a single common rela-
tionship, each pair may actually pertain to multi-
ple relationships. An example from the Google
dataset is brother:sister::husband:wife; Table 1
shows the semantic relations involved in this anal-
ogy. While the target relation FemaleCounterpart
is present in both pairs, by comparing the offsets
sister — brother and wife — husband, we as-
sume that either all ways in which each pair is
related are present in both, or that FemaleCoun-
terpart dominates the offset. We refer to this as
the Same-Relationship assumption.

Finally, it is not sufficient for two pairs to
share a common relationship label; that relation-
ship must be both representative and informa-
tive for analogies to make sense (the Informa-
tivity assumption). Relation labels may be suf-
ficiently broad as to be meaningless, as we en-
countered when drawing unfiltered binary rela-
tions from the Unified Medical Language Sys-
tem (UMLS) Metathesaurus. One sample analogy
from the RO:Null relation (indicating “related in
some way’”) was socks:stockings::Finns:Finnish
language. While both pairs are of related terms,
they are in no way related to one another.

Furthermore, even when two pairs are exam-
ples of the same kind of clearly-defined relation,
they may still be relatively uninformative. For ex-
ample, in the Sem-Para Meronym analogy apri-
cot:stone: :trumpet:mouthpiece the meronymic re-
lationship between apricot and stone could plau-
sibly identify a number of parts of a trumpet:
mouthpiece, valves, slide, etc.2 The extremely

2While this is similar to the Single-Target assumption, it
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high-level nature of several of the Sem-Para re-
lations (hypernymy, antonymy, and synonymy)
suggests that some of the difficulty observed by
Koper et al. (2015) is due to violations of Infor-
mativity.

4 BMASS

We present BMASS (the BioMedical Analogic
Similarity Set), a dataset of biomedical analogies,
generated using the expert-curated knowledge in
the Unified Medical Language System (UMLS)3
(Bodenreider, 2004) in order to identify medical
term pairs sharing the same relationships. We fol-
lowed the standard process for dataset generation
outlined in Section 3.1, with some adjustments for
the assumptions in Section 3.2.

The UMLS Metathesaurus is centered around
normalized concepts, represented by Concept
Unique Identifiers (CUIs). Each concept can be
represented in textual form by one or more terms
(e.g., C0009443 — “Common cold”, “acute rhini-
tis”). These terms may be multi-word expressions
(MWEs); in fact, many concepts in the UMLS
have no unigram terms.

The Metathesaurus also contains (subject, re-
lation, object) triples describing binary relation-
ships between concepts. These relationships are
specified at two levels: relationship types (RELs),
such as broader-than and qualified-by, and spe-
cific relationships (RELAs) within each type, e.g.,
tradename-of and has-finding-site. For this work,
we used the 721 unique REL/RELA pairings as
our source relationships, and treated the (subject,
object) pairs linked within each of these relation-
ships as candidates for generating analogies.

To enable a word embedding—based evaluation,
we first identified terms that appeared at least 25
times in the 2016 PubMed baseline collection of
biomedical abstracts,* and removed all (subject,
object) pairs involving concepts that did not corre-
spond to these frequent terms. Most relationships
in the Metathesaurus are many-to-many (i.e., each
subject can be paired with multiple objects and

bears separate consideration in that Single-Target refers to
multiple valid objects of a specific relationship, while this is
an issue of multiple valid relationships being described.

3We use the 2016AA release of the UMLS.

*We chose 25 as our minimum frequency to ensure that
each term appeared often enough to learn reasonable embed-
dings for its component words. To determine term frequency,
we first lowercased and stripped punctuation from both the
PubMed corpus and the term list extracted from UMLS, then
searched the corpus for exact term matches.



vice versa), and thus may challenge Single-Target
and Informativity assumptions; we therefore next
identified relations that had at least 50 1:1 in-
stances, i.e., a subject and object that are only
paired with one another within a specific relation-
ship. Since 1:1 instances are not sufficient to guar-
antee Informativity, we then manually reviewed
the remaining relations to identify those those that
we deemed to satisfy Informativity constraints.
For example, the is-a relationship between fongue
muscles and head muscle is not specific enough to
suggest that carbon monoxide should elicit gaso-
transmitters as its corresponding answer. How-
ever, for associated-with, sampled pairs such as
leg injuries : leg and histamine release : histamine
were sufficiently consistent that we deemed it In-
formative. This gave us a final set of 25 binary
relations, listed in Table 2.7

We follow Gladkova et al. (2016) in generating
a balanced dataset, to enable a more robust com-
parative analysis between relations. We randomly
sampled 50 (subject, object) pairs from each re-
lation, again restricting to concepts with strings
appearing frequently in PubMed. For each sub-
ject concept that we sampled, we collected all
valid object concepts and bundled them as a sin-
gle (subject, objects) pair. We then exhaustively
combined each concept pair with the others in its
relation to create 2,450 analogies, giving us a to-
tal dataset size of 61,250 analogies. Finally, for
each concept, we chose a single frequent term to
represent it, giving us both CUI and string repre-
sentations of each analogy.

5 Evaluation

We assess how well biomedical word embeddings
can perform on our dataset, and explore modi-
fications to the standard evaluation methodology
to relax the assumptions described in Section 3.2.
We use the skip-gram embeddings trained by Chiu
et al. (2016) on the PubMed citation database,
one set using a window size of 2 (PM-2) and an-
other set with window size 30 (PM-30). All other
word2vec hyperparameters were tuned by Chiu et
al. on a combination of similarity and relatedness
and named entity recognition tasks.

Additionally, we use the hyperparameters they
identified (minimum frequency=5, vector dimen-
sion=200, negative samples=10, sample=1e-4,

SExamples of each relation, along with their mappings to
UMLS REL/RELA values, are available online.
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ID | Name Amb
Lab/Rx
L1 | form-of 1.0
L2 | has-lab-number 1.1
L3 | has-tradename 1.5
L4 | tradename-of 1.3
L5 | associated-substance 1.6
L6 | has-free-acid-or-base-form 1.0
L7 | has-salt-form 1.1
L8 | measured-component-of 1.3
Hierarchical
H1 | refers-to 1.0
H2 | same-type 10.4
Morphological
M1 | adjectival-form-of 1.1
M2 | noun-form-of 1.0
Clinical
C1 | associated-with-malfunction-of- 2.6
gene-product
C2 | gene-product-malfunction- 1.5
associated-with-disease
C3 | causative-agent-of 4.6
C4 | has-causative-agent 2.0
CS5 | has-finding-site 1.9
C6 | associated-with 1.2
Anatomy
Al | anatomic-structure-is-part-of 1.6
A2 | anatomic-structure-has-part 5.4
A3 | is-located-in 1.4
Biology
B1 | regulated-by 1.0
B2 | regulates 1.0
B3 | gene-encodes-product 1.1
B4 | gene-product-encoded-by 2.4

Table 2: List of the relations kept after manual
filtering; Amb is the average ambiguity, i.e., the
average number of correct answers per analogy.

a=0.05, window size=2) to train our own embed-
dings on a subset of the 2016 PubMed Baseline
(14.7 million documents, 2.7 billion tokens). We
train word2vec (Mikolov et al., 2013a) samples
with the continuous bag-of-words (CBOW) and
skip-gram (SGNS) models, trained for 10 itera-
tions, and GloVe (Pennington et al., 2014) sam-
ples, trained for 50 iterations.

We performed our evaluation with each of
3COSADD, PAIRWISEDISTANCE, and 3CoOs-
MUL as the scoring function over the vocabulary.
In contrast to the prior findings of Levy and Gold-



berg (2014) on the Google dataset, performance
on BMASS is roughly equivalent among the three
methods, often differing by only one or two cor-
rect answers. We therefore only report results with
3COSADD, since it is the most familiar method.

5.1 Modifications to the standard method

We consider 3COSADD under three settings of
the analogies in our dataset. For a given analogy
a:b::c:?d, we refer to (a,b) as the exemplar pair
and (c, d) as the query pair; ?d signifies the target
answer.

Single-Answer puts analogies in a:b::c:d for-
mat, with a single example object b and a single
correct object d, by taking the first object listed for
each term pair. This enforces the Single-Answer
assumption.

Multi-Answer takes the first object listed for
the exemplar term pair, but keeps all valid an-
swers, i.e. a:b::c:[dy,ds,...]; this is similar to
the approach of Gladkova et al. (2016). There are
approximately 16k analogies in our dataset with
multiple valid answers.

All-Info keeps all valid objects for both the ex-
emplar and query pairs. The exemplar offset is
then calculated over B = [by, bo, ...] as

a—B—ézi:a—bi

Though this is superficially similar to 3COSAVG
(Drozd et al., 2016), we average over objects for a
specific subject, as opposed to averaging over all
subject-object pairs.

We report a relaxed accuracy (denoted Accr),
in which the guess is correct if it is in the set of
correct answers. (In the Single-Answer case, this
reduces to standard accuracy.) Accrg, as with stan-
dard accuracy, necessitates ignoring a, b, or c if
they are the top results (Linzen, 2016).

In order to capture information about all cor-
rect answers, we also report Mean Average Pre-
cision (MAP) and Mean Reciprocal Rank (MRR)
over the set of correct answers in the vocabulary,
as ranked by Equation 1. Since MAP and MRR do
not have a cutoff in terms of searching for the cor-
rect answer in the ranked vocabulary, they can be
used without the adjustment of ignoring a, b, and
c; thus, they can give a more accurate picture of
how close the correct terms are to the calculated
guesses.
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5.2 MWEs and candidate answers

As noted in Section 4, the terms in our analogy
dataset may be multi-word expressions (MWEs).
We follow the common baseline approach of rep-
resenting an MWE as the average of its compo-
nent words (Mikolov et al., 2013b; Chen et al.,
2013; Wieting et al., 2016). For phrasal terms
containing one or more words that are out of our
embedding vocabulary, we only consider the in-
vocabulary words: thus, if “parathyroid” is not in
the vocabulary, then the embedding of parathyroid
hypertensive factor will be

hypertensive + factor
2

For any individual analogy a:b::c:?d, the vo-
cabulary of candidate phrases to complete the
analogy is derived by calculating averaged word
embeddings for each UMLS term appearing in
PubMed abstracts at least 25 times. Terms for
which none of the component words are in vocab-
ulary are discarded. This yields a candidate set
of 229,898 phrases for the PM-2 and PM-30, and
263,316 for our CBOW, SGNS, and GloVe sam-
ples.

Since prior work on analogies has primarily
been concerned with unigram data, we also iden-
tified a subset of our data for which we could
find single-word string realizations for all con-
cepts in an analogy, using the full vocabulary of
our trained embeddings. Even in the All-Info set-
ting, we could only identify 606 such analogies;
Table 3 shows MAP results for PM-2 and CBOW
embeddings on the three relations with at least
100 unigram analogies. The unigram analogies
are slightly better captured than the full MWE
data for has-lab-number (L2) and has-tradename
(L3); however, lower performance on the unigram
subset in tradename-of (L4) shows that unigram
analogies are not always easier. We see a small
effect from the much larger set of candidate an-
swers in the unigram case (>1m unigrams), as
shown by the slightly higher MAP numbers in the
Uni, case. In general, it is clear that the difficulty
of some of the relations in our dataset is not due
solely to using MWEs in the analogies.

5.3 Metric comparison

Figure 1 shows Accr, MAP, and MRR results
for each relation in BMASS, using PM-2 embed-
dings in the Multi-Answer setting. Overall, per-
formance varies widely between relations, with all
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Figure 3: Per-relation MAP for all embeddings under the Multi-Answer setting.

three metrics staying under 0.1 in the majority of
cases; this mirrors previous findings on other anal-
ogy datasets (Levy and Goldberg, 2014; Gladkova
et al., 2016; Drozd et al., 2016).

MAP further fleshes out these differences by re-
porting performance over all correct answers for a
given analogy. This lets us distinguish between re-
lations like has-salt-form (L7), where noticeably
lower MAP numbers reflect a wider distribution
of the multiple correct answers, and relations like
regulates (B2) or associated-with (C6), where a
low Accp, reflects many incorrect answers, but a
higher MAP indicates that the correct answers are
relatively near the guess.
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MRR, on the other hand, more optimistically
reports how close we got to finding any correct
answer. Thus, for the has-causative-agent (C4) re-
lation, low Accr, is belied by a noticeably higher
MRR, suggesting that even when we guess wrong,
the correct answer is close. This contrasts with
relations like refers-to (H1) or causative-agent-
of (C3), where MRR is more consistent with
Accp, indicating that wrong guesses tend to be
farther from the truth. Since most of our analo-
gies (45,178 samples, or about 74%) have only a
single correct answer, MAP and MRR tend to be
highly similar. However, in high-ambiguity rela-
tions like same-type (H2), higher MRR numbers



give a better sense of our best case performance.

5.4 Analogy settings

To compare across the Single-Answer, Multi-
Answer, and All-Info settings, we first look at
Accp, for each relation in BMASS, shown for PM-
2 embeddings in Figure 2 (the observed patterns
are similar with the other embeddings). Unsur-
prisingly, allowing for multiple answers in Multi-
Answer and All-Info slightly raises Accg in most
cases. What is surprising, however, is that includ-
ing more sample exemplar objects in the All-Info
setting had widely varying results. In some cases,
such as same-type (H2), associated-substance
(LS), and gene-product-encoded-by (B4), the ad-
ditional exemplars gave a noticeable improvement
in accuracy. In others, accuracy actually went
down: form-of (L1) and has-free-acid-or-base-
form (L6) are the most striking examples, with
absolute decreases of 4% and 8% respectively
from the Multi-Answer case for PM-2 (the de-
creases are similar with other embeddings). Thus,
it seems that multiple examples may help with In-
formativity in some cases, but confuse it in oth-
ers. Taken together with the improvements seen
in Drozd et al. (2016) from using 3COSAVG, this
is another indication that any single subject-object
pair may not be sufficiently representative of the
target relationship.

5.5 Embedding methods

Averaging over all relations, the five embedding
settings we tested behaved roughly the same, with
our trained embeddings slightly outperforming the
pretrained embeddings of Chiu et al. (2016); sum-
mary Accr, MAP, and MRR performances are
given in Table 4. At the level of individual re-
lations, Figure 3 shows MAP performance in the
Multi-Answer setting. The four word2vec sam-

Rel | . M2 . (BOW

Uni Unipy MWE Uni Unipy MWE
L2 | 0.05 0.04 0.03 0.11 0.13 0.06
L3 | 0.10 0.12 0.04 0.12 0.17 0.06
L4 | 0.00 0.00 0.01 0.04 0.05 0.07

Table 3: MAP performance on the three BMASS
relations with >100 unigram analogies. Uni is us-
ing unigram embeddings on unigram data, Unip,
is using MWE embeddings on unigram data, and
MWE is performance with MWE embeddings
over the full MWE data.
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ples tend to behave similarly, with some incon-
sistent variations. Interestingly, CBOW outper-
forms the other embeddings by a large margin in
several relations, including regulated-by (B1) and
has-tradename (L3).

GloVe varies much more widely across the re-
lations, as reflected in the higher standard devia-
tions in Table 4. While GloVe consistently outper-
forms word2vec embeddings on has-free-acid-or-
base-form (L6) and has-salt-form (L7), it signif-
icantly underperforms on the morphological and
hierarchical relations, among others. Most no-
tably, while the word2vec embeddings show mi-
nor differences in performance between the Multi-
Answer and All-Info settings, GloVe Accp, perfor-
mance falls drastically on form-of (L1) and has-
free-acid-or-base-form (L6), as shown in Table 5.
However, its MAP and MRR numbers stay simi-
lar, suggesting that there is only a reshuffling of
results closest to the guess.

5.6 Error analysis

Several interesting patterns emerge in review-
ing individual a:b::c:?d predictions. A num-
ber of errors follow directly from our word av-
eraging approach to MWEs: words that ap-
pear in b or c often appear in the predictions,
as in gosorelin:ici 118630::letrozole: *ici 164384.
Prefix substitutions also occurred, as with
mianserin hydrochloride:mianserin::scopolamine
hydrobromide: *scopolamine methylbromide.
Often, the b term(s) would outweigh c,
leading to many of the top guesses be-
ing variants on b. In one analogy, sodium
acetylsalicyclate:aspirin: :intravenous im-
munoglobulins: ?immunoglobulin g, the top
guesses were: *aspirin prophylaxis, *aspirin,
*aspirin antiplatelet, and *low-dose aspirin.

In other cases, related to the nearest neighbor-
hood over-reporting observed by Linzen (2016),
we saw guesses very similar to c, regardless
of a or b, as with acute inflammations:acutely
inflamed.: :endoderm: *embryonic endoderm; other
near guesses included *endoderm cell and epi-
blast.

Finally, we found several analogies where
the incorrect guesses made were highly related
to the correct answer, despite not matching.
One such analogy was oropharyngeal suction-
ing:substances: :thallium  scan:?radioisotopes;
the top guess was *radioactive substances, and



Settin Single-Answer Multi-Answer All-Info
& Accr MAP MRR Accr MAP MRR Accr MAP MRR
PM-2 | .08 (16) .07 (.13) .07(.13) | .08 (.15) .07 (12) .08 (.11) | .07 (13) .07 (.I1) .07 (11)
PM-30 | .08 (.16) .08 (.13) .08 (.13) | .09 (.16) .08 (.13) .09 (.13) | .08 (.13) .08 (.12) .09 (.12)
GloVe | .11(22) .09 (.16) .09(.16) | .11(22) .09(16) .10(.15) | .10(.18) .09 (.16) .10(.15)
CBOW | .11(18) .11(14) .11(14) | 12(18) .12(14) .12(14) | .11(17) .12(.14) .13(.14)
SGNS | .11 (18) .11(14) .11(14) | .11(18) 11(14) .12(13) | .11 (17) .12(14) .12(.14)

Table 4: Average performance over all relations in the dataset, for each set of embeddings. Results are
reported as “Mean (Standard deviation)” for each metric.

Metric Ll L6

SA MA Al SA MA Al
Accr | 049 049 024 | 062 0.62 0.39
MAP | 028 028 0.28 | 0.39 0.39 0.39
MRR | 028 028 0.28 | 0.39 0.39 0.39

Table 5: Accr, MAP, and MRR performance
variation between Single-Answer (SA), Multi-
Answer (MA), and All-Info (AI) settings for
GloVe embeddings on form-of (L1) and has-free-
acid-or-base-form (L6)

*gallium compounds was two guesses farther
down. Showing some mixed effect from the
neighborhood of b, *performance-enhancing
substances was the next-ranked candidate.

6 Discussion

Relaxing the Single-Answer, Same-Relationship,
and Informativity assumptions by including mul-
tiple correct answers and multiple exemplar pairs
and by reporting MAP and MRR in addition to
accuracy paints a more complete picture of how
well word embeddings are performing on anal-
ogy completion, but leaves a number of ques-
tions unanswered. While we can more clearly see
the relations where we correctly complete analo-
gies (or come close), and contrast with relations
where a vector arithmetic approach completely
misses the mark, what distinguishes these cases
remains unclear. Some more straightforward rela-
tionships, such as gene-encodes-product (B3) and
its inverse gene-product-encoded-by (B4), show
surprisingly poor results, while the very broad
synonymy of refers-to (H1) is captured compar-
atively well. Additionally, in contrast to prior
work with morphological relations, adjectival-
form-of (M1) and noun-form-of (M2) are much
more challenging in the biomedical domain, as
we see non-morphological related pairs such as
predisposed:disease susceptibility and venous lu-
men:endovenous, in addition to more normal pairs
like sweating:sweaty and muscular:muscle. Fur-
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ther analysis may provide some insight into spe-
cific challenges posed by the relations in our
dataset, as well as why performance with PAIR-
WISEDISTANCE and 3COoSMUL did not notice-
ably differ from 3COSADD.

In terms of specific model errors, we did not
evaluate the effects of any embedding hyperpa-
rameters on performance in BMASS, opting to
use hyperparameter settings tuned for general-
purpose use in the biomedical domain. Levy et al.
(2015a) and Chiu et al. (2016), among others,
show significant impact of embedding hyperpa-
rameters on downstream performance. Exploring
different settings may be one way to get a bet-
ter sense of exactly what incorrect answers are
being highly-ranked, and why those are emerg-
ing from the affine organization of the embedding
space. Additionally, the higher variance in per-
relation performance we observed with GloVe em-
beddings suggests that there is more to unpack as
to what the GloVe model is capturing or failing to
capture compared to word2vec approaches.

Finally, while we considered Informativity dur-
ing the generation of BMASS, and relaxed the
Single-Answer assumption in our evaluation, we
have not really addressed the Same-Relationship
assumption. Using multiple exemplar pairs is one
attempt to reduce the impact of confusing extrane-
ous relationships, but in practice this helps some
relations and harms others. Drozd et al. (2016)
tackle this problem with the LRCos method; how-
ever, their findings of mis-applied features and
errors due to very slight mis-rankings show that
there is still room for improvement. One question
is whether this problem can be addressed at all
with non-parametric models like the vector offset
approaches, to retain the advantages of evaluating
directly from the word embedding space, or if a
learned model (like LRCos) is necessary to sepa-
rate out the different aspects of a related term pair.



7 Conclusions

We identified three key assumptions in the stan-
dard methodology for analogy-based evaluations
of word embeddings: Single-Answer (that there
is a single correct answer for an analogy), Same-
Relationship (that the exemplar and query pairs
are related in the same way), and Informativity
(that the exemplar pair is informative with respect
to the query pair). We showed that these assump-
tions do not hold in recent benchmark datasets or
in biomedical data. Therefore, to relax these as-
sumptions, we modified analogy evaluation to al-
low for multiple correct answers and multiple ex-
emplar pairs, and reported Mean Average Preci-
sion and Mean Reciprocal Recall over the ranked
vocabulary, in addition to accuracy of the highest-
ranked choice.

We also presented the BioMedical Analogic
Similarity Set (BMASS), a novel analogy comple-
tion dataset for the biomedical domain. In contrast
to existing datasets, BMASS was automatically
generated from a large-scale database of (subject,
relation, object) triples in the UMLS Metathe-
saurus, and represents a number of challenging
real-world relationships. Similar to prior results,
we find wide variation in word embedding perfor-
mance on this dataset, with accuracies above 50%
on some relationships such as has-salt-form and
regulated-by, and numbers below 5% on others,
e.g., anatomic-structure-is-part-of and measured-
component-of.

Finally, we are able to address the Single-
Answer assumption by modifying the analogy
evaluation to accommodate multiple correct an-
swers, and we consider Informativity in generat-
ing our dataset and using multiple example pairs.
However, the Same-Relationship assumption re-
mains a challenge, as does a more automated ap-
proach to either evaluating or relaxing Informa-
tivity. These offer promising directions for future
work in analogy-based evaluations.
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Abstract

State-of-the-art methods for protein-
protein interaction (PPI) extraction are
primarily feature-based or kernel-based
by leveraging lexical and syntactic in-
formation. But how to incorporate such
knowledge in the recent deep learning
methods remains an open question. In
this paper, we propose a multichannel
dependency-based convolutional neu-
ral network model (McDepCNN). It
applies one channel to the embedding
vector of each word in the sentence,
and another channel to the embedding
vector of the head of the corresponding
word.  Therefore, the model can use
richer information obtained from different
channels. Experiments on two public
benchmarking datasets, AIMed and
Biolnfer, demonstrate that McDepCNN
compares favorably to the state-of-the-art
rich-feature and single-kernel based meth-
ods. In addition, McDepCNN achieves
24.4% relative improvement in Fl-score
over the state-of-the-art methods on cross-
corpus evaluation and 12% improvement
in F1-score over kernel-based methods on
“difficult” instances. These results suggest
that McDepCNN generalizes more easily
over different corpora, and is capable of
capturing long distance features in the
sentences.

1 Introduction

With the growing amount of biomedical infor-
mation available in the textual form, there has
been considerable interest in applying natural lan-
guage processing (NLP) techniques and machine
learning (ML) methods to the biomedical litera-
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ture (Huang and Lu, 2015; Leaman and Lu, 2016;
Singhal et al., 2016; Peng et al., 2016). One of the
most important tasks is to extract protein-protein
interaction relations (Krallinger et al., 2008).

Protein-protein interaction (PPI) extraction is a
task to identify interaction relations between pro-
tein entities mentioned within a document. While
PPI relations can span over sentences and even
cross documents, current works mostly focus on
PPI in individual sentences (Pyysalo et al., 2008;
Tikk et al., 2010). For example, “ARFTS” and
“XIAP-BIR3” are in a PPI relation in the sentence
“ARFTSpror; specifically binds to a distinct do-
main in XIAP-BIR3prom”.

Recently, deep learning methods have achieved
notable results in various NLP tasks (Manning,
2015). For PPI extraction, convolutional neural
networks (CNN) have been adopted and applied
effectively (Zeng et al., 2014; Quan et al., 2016;
Hua and Quan, 2016). Compared with traditional
supervised ML methods, the CNN model is more
generalizable and does not require tedious feature
engineering efforts. However, how to incorporate
linguistic and semantic information into the CNN
model remains an open question. Thus previous
CNN-based methods have not achieved state-of-
the-art performance in the PPI task (Zhao et al.,
2016a).

In this paper, we propose a multichannel
dependency-based convolutional neural network,
McDepCNN, to provide a new way to model
the syntactic sentence structure in CNN mod-
els. Compared with the widely-used one-hot CNN
model (e.g., the shortest-path information is firstly
transformed into a binary vector which is zero in
all positions except at this shortest-path’s index,
and then applied to CNN), McDepCNN utilizes
a separate channel to capture the dependencies of
the sentence syntactic structure.

To assess McDepCNN, we evaluated our

Proceedings of the BioNLP 2017 workshop, pages 29-38,
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model on two benchmarking PPI corpora,
AIMed (Bunescu et al.,, 2005) and Bioln-
fer (Pyysalo et al., 2007). Our results show that
McDepCNN performs better than the state-of-the-
art feature- and kernel-based methods.

We further examined McDepCNN in two exper-
imental settings: a cross-corpus evaluation and an
evaluation on a subset of “difficult” PPI instances
previously reported (Tikk et al., 2013). Our re-
sults suggest that McDepCNN is more generaliz-
able and capable of capturing long distance infor-
mation than kernel methods.

The rest of the manuscript is organized as fol-
lows. We first present related work. Then, we
describe our model in Section 3, followed by an
extensive evaluation and discussion in Section 4.
We conclude in the last section.

2 Related work

From the ML perspective, we formulate the PPI
task as a binary classification problem where dis-
criminative classifiers are trained with a set of pos-
itive and negative relation instances. In the last
decade, ML-based methods for the PPI tasks have
been dominated by two main types: the feature-
based vs. kernel based method. The common
characteristic of these methods is to transform re-
lation instances into a set of features or rich struc-
tural representations like trees or graphs, by lever-
aging linguistic analysis and knowledge resources.
Then a discriminative classifier is used, such as
support vector machines (Vapnik, 1995) or condi-
tional random fields (Lafferty et al., 2001).

While these methods allow the relation extrac-
tion systems to inherit the knowledge discovered
by the NLP community for the pre-processing
tasks, they are highly dependent on feature en-
gineering (Fundel et al., 2007; Van Landeghem
et al., 2008; Miwa et al., 2009b; Bui et al., 2011).
The difficulty with feature-based methods is that
data cannot always be easily represented by ex-
plicit feature vectors.

Since natural language processing applica-
tions involve structured representations of the
input data, deriving good features is difficult,
time-consuming, and requires expert knowledge.
Kernel-based methods attempt to solve this prob-
lem by implicitly calculating dot products for ev-
ery pair of examples (Erkan et al., 2007; Airola
et al., 2008; Miwa et al., 2009a; Kim et al., 2010;
Chowdhury et al., 2011). Instead of extracting fea-
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ture vectors from examples, they apply a similar-
ity function between examples and use a discrim-
inative method to label new examples (Tikk et al.,
2010). However, this method also requires manual
effort to design a similarity function which can not
only encode linguistic and semantic information in
the complex structures but also successfully dis-
criminate between examples. Kernel-based meth-
ods are also criticized for having higher computa-
tional complexity (Collins and Duffy, 2002).

Convolutional neural networks (CNN) have
recently achieved promising results in the PPI
task (Zeng et al., 2014; Hua and Quan, 2016).
CNNs are a type of feed-forward artificial neu-
ral network whose layers are formed by a con-
volution operation followed by a pooling opera-
tion (LeCun et al., 1998). Unlike feature- and
kernel-based methods which have been well stud-
ied for decades, few studies investigated how to in-
corporate syntactic and semantic information into
the CNN model. To this end, we propose a neu-
ral network model that makes use of automati-
cally learned features (by different CNN layers)
together with manually crafted ones (via domain
knowledge), such as words, part-of-speech tags,
chunks, named entities, and dependency graph of
sentences. Such a combination in feature engi-
neering has been shown to be effective in other
NLP tasks also (e.g. (Shimaoka et al., 2017)).

Furthermore, we propose a multichannel CNN,
a model that was suggested to capture different
“views” of input data. In the image processing,
(Krizhevsky et al., 2012) applied different RGB
(red, green, blue) channels to color images. In
NLP research, such models often use separate
channels for different word embeddings (Yin and
Schiitze, 2015; Shi et al., 2016). For example, one
could have separate channels for different word
embeddings (Quan et al., 2016), or have one chan-
nel that is kept static throughout training and the
other that is fine-tuned via backpropagation (Kim,
2014). Unlike these studies, we utilize the head of
the word in a sentence as a separate channel.

3 CNN Model
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Figure 1 illustrates the overview of our model,
which takes a complete sentence with mentioned
entities as input and outputs a probability vector
(two elements) corresponding to whether there is
a relation between the two entities. Our model

Model Architecture Overview



mainly consists of three layers: a multichannel
embedding layer, a convolution layer, and a fully-
connected layer.

3.2 Embedding Layer

In our model, as shown in Figure 1, each word in a
sentence is represented by concatenating its word
embedding, part-of-speech, chunk, named entity,
dependency, and position features.

3.2.1 Word embedding

Word embedding is a language modeling tech-
niques where words from the vocabulary are
mapped to vectors of real numbers. It has been
shown to boost the performance in NLP tasks. In
this paper, we used pre-trained word embedding
vectors (Pyysalo et al., 2013) learned on PubMed
articles using the word2vec tool (Mikolov et al.,
2013). The dimensionality of word vectors is 200.

3.2.2 Part-of-speech

We used the part-of-speech (POS) feature to ex-
tend the word embedding. Similar to (Zhao et al.,
2016b), we divided POS into eight groups. Then
each group is mapped to an eight-bit binary vector.
In this way, the dimensionality of the POS feature
is 8.

3.2.3 Chunk

We used the chunk tags obtained from Genia Tag-
ger for each word (Tsuruoka and Tsujii, 2005).
We encoded the chunk features using a one-hot
scheme. The dimensionality of chunk tags is 18.

3.2.4 Named entity

To generalize the model, we used four types of
named entity encodings for each word. The named
entities were provided as input by the task data. In
one PPl instance, the types of two proteins of inter-
est are PROT1 and PROT? respectively. The type
of other proteins is PROT, and the type of other
words is O. If a protein mention spans multiple
words, we marked each word with the same type
(we did not use a scheme such as IOB). The di-
mensionality of named entity is thus 4.

3.2.5 Dependency

To add the dependency information of each word,
we used the label of “incoming” edge of that
word in the dependency graph. Take the sen-
tence from Figure 2 as an example, the depen-
dency of “ARFTS” is “nsubj” and the dependency

31

of “binds” is “ROOT”. We encoded the depen-
dency features using a one-hot scheme, and their
dimensionality is 101.

3.2.6 Position feature

In this work, we consider the relationship of two
protein mentions in a sentence. Thus, we used the
position feature proposed in (Sahu et al., 2016),
which consists of two relative distances, d1 and
d2, for representing the distances of the current
word to PROT1 and PROT?2 respectively. For ex-
ample in Figure 2, the relative distances of the
word “binds” to PROT1 (“ARFTs”) and PROT2
(“XIAP-BIR3”) are 2 and -6, respectively. Same
as in Table S4 of (Zhao et al., 2016b), both d1 and
d2 are non-linearly mapped to a ten-bit binary vec-
tor, where the first bit stands for the sign and the
remaining bits for the distance.

3.3 Multichannel Embedding Layer

A novel aspect of McDepCNN is to add the “head”
word representation of each word as the second
channel of the embedding layer. For example,
the second channel of the sentence in Figure 2 is
“binds binds ROOT binds domain domain binds
domain” as shown in Figure 1. There are several
advantages of using the “head” of a word as a sep-
arate channel.

First, it intuitively incorporates the dependency
graph structure into the CNN model. Compared
with (Hua and Quan, 2016) which used the short-
est path between two entities as the sole input
for CNN, our model does not discard informa-
tion outside the scope of two entities. Such in-
formation was reported to be useful (Zhou et al.,
2007). Compared with (Zhao et al., 2016b) which
used the shortest path as a bag-of-word sparse 0-1
vector, our model intuitively reflects the syntac-
tic structure of the dependencies of the input sen-
tence.

Second, together with convolution, our model
can better capture longer distance dependencies
than the sliding window size. As shown in Fig-
ure 2, the second channel of McDepCNN breaks
the dependency graph structure into structural
<head word, child word> pairs where each word
is a modifier of its previous word. In this way,
it reflects the skeleton of a constituent where the
second channel shadows the detailed information
of all sub-constituents in the first channel. From
the perspective of the sentence string, the second
channel is similar to a gapped n-gram or a skipped
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Figure 1: Overview of the CNN model.
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Figure 2: Dependency graph.

n-gram where the skipped words are based on the
structure of the sentence.

3.4 Convolution

We applied convolution to input sentences to com-
bine two channels and get local features (Col-
lobert et al., 2011). Consider z1,...,x, to be
the sequence of word representations in a sentence
where

T

= Fwora ® - @Epoistionai =1,...,n (1)

Here @ is concatenation operation so ¢ € R is
the embedding vector for the ith word with the di-
mensionality d. Let zf; , ; represent a window
of size k in the sentence for channel c. Then the
output sequence of the convolution layer is

con; = f(z WEZsi g1 + bk) (2)

where f is a rectify linear unit (RelLU) function
and by, is the biased term. Both wj and by, are the
learning parameters.
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1-max pooling was then performed over each
map, i.e., the largest number from each feature
map was recorded. In this way, we obtained fixed
length global features for the whole sentence. The
underlying intuition is to consider only the most
useful feature from the entire sentence.

mr = max (con;) 3)

1<i<n—k+1

3.5 Fully Connected Layer with Softmax

To make a classifier over extracted global features,
we first applied a fully connected layer to the fea-
ture vectors of multichannel obtained above.

O = w,(m3g & ms ®mz) + b, “4)

The final softmax then receives this vector O
as input and uses it to classify the PPI; here we
assume binary classification for the PPI task and
hence depict two possible output states.

@Oppi

plppilz,b) = — ©)

ppi - eOother
Here, 6 is a vector of the hyper-parameters of the
model, such as w{, by, w,, and b,. Further, we
used dropout technique in the output of the max
pooling layer for regularization (Srivastava et al.,
2014). This prevented our method from overfitting
by randomly “dropping” with probability (1 — p)
neurons during each forward/backward pass while
training.



3.6 Training

To train the parameters, we used the log-likelihood
of parameters on a mini-batch training with a
batch size of m. We use the Adam algorithm to
optimize the loss function (Kingma and Ba, 2015).

J(0) = p(ppi™ '™, 0) (6)

3.7 Experimental setup

For our experiments, we used the Genia Tagger to
obtain the part-of-speech, chunk tags, and named
entities of each word (Tsuruoka and Tsujii, 2005).
We parsed each sentence using the Bllip parser
with the biomedical model (Charniak, 2000; Mc-
Closky, 2009). The universal dependencies were
then obtained by applying the Stanford dependen-
cies converter on the parse tree with the CCPro-
cessed and Universal options (De Marneffe et al.,
2014).

We implemented the model using Tensor-
Flow (Abadi et al., 2016). All trainable variables
were initialized using the Xavier algorithm (Glo-
rot and Bengio, 2010). We set the maximum sen-
tence length to 160. That is, longer sentences were
pruned, and shorter sentences were padded with
zeros. We set the learning rate to be 0.0007 and the
dropping probability 0.5. During the training, we
ran 250 epochs of all the training examples. For
each epoch, we randomized the training examples
and conducted a mini-batch training with a batch
size of 128 (m = 128).

In this paper, we experimented with three win-
dow sizes: 3, 5 and 7, each of which has 400 fil-
ters. Every filter performs convolution on the sen-
tence matrix and generates variable-length feature
maps. We got the best results using the single win-
dow of size 3 (see Section 4.2)

4 Results and Discussion

4.1 Data

We evaluated McDepCNN on two benchmarking
PPI corpora, AIMed (Bunescu et al., 2005) and
Biolnfer (Pyysalo et al., 2007). These two corpora
have different sizes (Table 1) and vary slightly in
their definition of PPI (Pyysalo et al., 2008).

Tikk et al. (2010) conducted a comparison of
a variety of PPI extraction systems on these two
corpora'. In order to compare, we followed their

'nttp://mars.cs.utu.fi/PPICorpora
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Table 1: Statistics of the corpora.

Corpus Sentences # Positives # Negatives
AlMed 1,955 1,000 4,834
Biolnfer 1,100 2,534 7,132

experimental setup to evaluate our methods: self-
interactions were excluded from the corpora and
10-fold cross-validation (CV) was performed.

4.2 Results and discussion

Our system performance, as measured by Preci-
sion, Recall, and Fl-score, is shown in Table 2.
To compare, we also include the results published
in (Tikk et al., 2010; Peng et al., 2015; Van Lan-
deghem et al., 2008; Fundel et al., 2007). Row
2 reports the results of the previous best deep
learning system on these two corpora. Rows 3
and 4 report the results of two previous best sin-
gle kernel-based methods, an APG kernel (Airola
et al., 2008; Tikk et al., 2010) and an edit ker-
nel (Peng et al., 2015). Rows 5-6 report the re-
sults of two rule-based systems. As can be seen,
McDepCNN achieved the highest results in both
precision and overall F1-score on both datasets.

Note that we did not compare our results with
two recent deep-learning approaches (Hua and
Quan, 2016; Quan et al., 2016). This is because
unlike other previous studies, they artificially re-
moved sentences that cannot be parsed and dis-
carded pairs which are in a coordinate struc-
ture. Thus, our results are not directly comparable
with theirs. Neither did we compare our method
with (Miwa et al., 2009b) because they combined,
in a rich vector, analysis from different parsers and
the output of multiple kernels.

To further test the generalizability of our
method, we conducted the cross-corpus experi-
ments where we trained the model on one corpus
and tested it on the other (Table 3). Here we com-
pared our results with the shallow linguistic model
which is reported as the best kernel-based method
in (Tikk et al., 2013).

The cross-corpus results show that McDepCNN
achieved 24.4% improvement in F-score when
trained on Biolnfer and tested on AIMed, and
18.2% vice versa.

To better understand the advantages of McDe-
pCNN over kernel-based methods, we followed
the lead of (Tikk et al., 2013) to compare the
method performance on some known “difficult”



Table 2: Evaluation results. Performance is reported in terms of Precision, Recall, and F1-score.

AlMed Biolnfer
Method P R F P R F
7 McDepCNN 67.3 60.1 63.5 62.7 68.2 653
2 Deep neutral network (Zhao et al., 2016a) 51.5 634 56.1 539 729 61.6
s All-path graph kernel (Tikk et al., 2010) 492 646 553 533 70.1 60.0
4 Edit kernel (Peng et al., 2015) 653 573 61.1 599 57.6 58.7
5 Rich-feature (Van Landeghem et al., 2008) 49.0 440 46.0 - - -
¢ RelEx (Fundel et al., 2007) 40.0 50.0 44.0 39.0 45.0 410

Table 3: Cross-corpus results. Performance is reported in terms of Precision, Recall, and F1-score.

AlMed Biolnfer
Method Training corpus P R F P R F
McDepCNN AlMed - - - 39.5 614 48.0
Biolnfer 40.1 659 49.9 - - -
Shallow linguistic (Tikk et al., 2010) AIMed - - - 29.2 66.8 40.6
Biolnfer 76.8 272 415 - - -

Table 4: Instances that are the most difficult to
classify correctly by the collection of kernels us-
ing cross-validation (Tikk et al., 2013).

Corpus  Positive difficult Negative difficult
AlMed 61 184
Biolnfer 111 295

instances in AIMed and Biolnfer. This subset of
difficult instances is defined as 10% of all pairs
with the least number of 14 kernels being able to
classify correctly (Table 4).

Table 5 shows the comparisons between McDe-
pCNN and kernel-based methods on difficult in-
stances. The results of McDepCNN were ob-
tained from the difficult instances combined from
AlMed and Biolnfer (172 positives and 479 nega-
tives). And the results of APG, Edit, and SL were
obtained from AIMed, Biolnfer, HPRDS50, IEPA,
and LLL (190 positives and 521 negatives) (Tikk
et al.,, 2013). While the input datasets are dif-
ferent, our outcomes are remarkably higher than
the prior studies. The results show that McDe-
PCNN achieves 17.3% in F1-score on difficult in-
stances which is more than three times better than
other kernels. Since there are no examples of diffi-
cult instances that could not be classified correctly
by at least one of the 14 kernel methods, below,
we only list some examples that McDepCNN can
classify correctly.

1. Immunoprecipitation experiments further re-

34

veal that the fully assembled receptor com-
plex is composed of two IL-6prori, two IL-
6R alphaprors, and two gp130 molecules.

The phagocyte NADPH oxidase is a complex
of membrane cytochrome b558 (comprised
of subunits p22-phox and gp91-phox) and
three cytosol proteins (p47-phoxprori, p67-
phox, and p2lrac) that translocate to mem-
brane and bind to cytochrome b558pror7.

Together with the conclusions in (Tikk et al.,
2013), “positive pairs are more difficult to classify
in longer sentences” and “most of the analyzed
classifiers fail to capture the characteristics of rare
positive pairs in longer sentences”, this compari-
son suggests that McDepCNN is probably capable
of better capturing long distance features from the
sentence and are more generalizable than kernel
methods.

Finally, Table 6 compares the effects of differ-
ent parts in McDepCNN. Here we tested McDe-
PCNN using 10-fold of AIMed. Row 1 used a sin-
gle window with the length of 3, row 2 used two
windows, and row 3 used three windows. The re-
duced performance indicate that adding more win-
dows did not improve the model. This is par-
tially because the multichannel in McDepCNN
has captured good context features for PPI. Sec-
ond, we used the single channel and retrained the
model with window size 3. The performance then
dropped 1.1%. The results underscore the effec-
tiveness of using the head word as a separate chan-



Table 5: Comparisons on the difficult instances
with CV evaluation. Performance is reported in
terms of Precision, Recall, and F1-score®.

Method P R F
McDepCNN 14.0 227 173
All-path graph kernel 43 79 55
Edit kernel 48 58 53
Shallow linguistic 36 79 49

* The results of McDepCNN were obtained on the difficult
instances combined from AlMed and Biolnfer (172 positives
and 479 negatives). The results of others (Tikk et al., 2013)
were obtained from AIMed, Biolnfer, HPRD50, IEPA, and
LLL (190 positives and 521 negatives).

Table 6: Contributions of different parts in McDe-
PCNN. Performance is reported in terms of Preci-
sion, Recall, and F1-score.

Method P R F A
window = 3 67.3 60.1 63.5

window = [3,5] 609 624 61.6 (1.9
window = [3,5,7] 61.7 619 61.8 (1.7)
Single channel 62.8 623 626 (1.1)

nel in CNN.

5 Conclusion

In this paper, we describe a multichannel
dependency-based convolutional neural network
for the sentence-based PPI task. Experiments on
two benchmarking corpora demonstrate that the
proposed model outperformed the current deep
learning model and single feature-based or kernel-
based models. Further analysis suggests that our
model is substantially more generalizable across
different datasets. Utilizing the dependency struc-
ture of sentences as a separated channel also en-
ables the model to capture global information
more effectively.

In the future, we would like to investigate how
to assemble different resources into our model,
similar to what has been done to rich-feature-
based methods (Miwa et al., 2009b) where the
current best performance was reported (F-score of
64.0% (AIMed) and 66.7% (Biolnfer)). We are
also interested in extending the method to PPIs be-
yond the sentence boundary. Finally, we would
like to test and generalize this approach to other
biomedical relations such as chemical-disease re-
lations (Wei et al., 2016).
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Abstract

Linking spans of natural language text to
concepts in a structured source is an im-
portant task for many problems. It allows
intelligent systems to leverage rich knowl-
edge available in those sources (such as
concept properties and relations) to en-
hance the semantics of the mentions of
these concepts in text. In the medi-
cal domain, it is common to link text
spans to medical concepts in large, cu-
rated knowledge repositories such as the
Unified Medical Language System. Dif-
ferent approaches have different strengths:
some are precision-oriented, some recall-
oriented; some better at considering con-
text but more prone to hallucination. The
variety of techniques suggests that ensem-
bling could outperform component tech-
nologies at this task. In this paper, we de-
scribe our process for building a Stacking
ensemble using additional, auxiliary fea-
tures for Entity Linking in the medical do-
main. Our best model beats several base-
lines and produces state-of-the-art results
on several medical datasets.

1 Introduction

Entity Linking is the task of mapping phrases in
text (mention spans) to concepts in a structured
source, such as a knowledge base. The mention
span is usually a word or short phrase describing
a single, coherent concept. For example, “back
pain” may be a mention span for a Dorsalgia con-
cept in a knowledge base. The span context is a
window of text surrounding the mention span that
may be useful for disambiguating it. For example,
the sentence “The patient reports suffering from
back pain for several years prior to treatment” may
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be useful for determining that “back pain” refers
to the concept Chronic Dorsalgia in this context.
In the medical domain, it is common to map men-
tion spans to concepts in the Unified Medical Lan-
guage System (UMLS)'. Concepts in UMLS have
unique identifiers called CUIs (Concept Unique
Identifiers). For example, the CUI for the concept
Dorsalgiais C0004604.

The concepts in UMLS come from merging
concepts from many disparate contributing vo-
cabularies. Since automatic merging is imper-
fect, UMLS often contains multiple distinct CUIs
for what amounts to the same semantic concept.
For example, the three distinct CUIs C0425687,
C1167958 and C3263244 are all Jugular Ve-
nous Distension. An Entity Linking system at-
tempting to link a span such as “engorgement of
the jugular vein” should be required to return all
three CUIs. A ground truth dataset should include
all the three mappings as well. UMLS also con-
tains multiple textual labels for each CUI (called
“variants”) and semantic relations between CUISs,
such as Acetaminophen may_treat: Pain.

Ensembling multiple systems is a well known
standard approach to improving accuracy in ma-
chine learning (Dietterich, 2000). Ensembles have
been applied to a wide variety of problems in all
domains of artificial intelligence including natu-
ral language processing (NLP). However, these
techniques do not learn to discriminate adequately
across the component systems and thus are unable
to integrate them optimally. Combining systems
intelligently is crucial for improving the overall
performance. In this paper, we use an approach
called Stacking with Auxiliary Features (SWAF)
(Rajani and Mooney, 2017) for combining multi-
ple diverse models. Stacking (Wolpert, 1992) uses
supervised learning to train a meta-classifier to

"UMLS: http://www.nlm.nih.gov/research/
umls/
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combine multiple system outputs. SWAF enables
the stacker to fuse additional relevant knowledge
from multiple systems and thus leverage them to
improve prediction. The idea behind using auxil-
iary features is that an output is more reliable if
not just multiple systems produce it but also agree
on its provenance and there is sufficient support-
ing evidence. We are the first to use ensembling
for entity linking in the medical domain that lacks
labeled data. All the publicly available datasets are
very small and thus learning is a problem. Our ap-
proach is designed to overcome these challenges
in the medical domain by using auxiliary features
that are precision-focused and can be used to form
a classification boundary from small amounts of
data.

2 Component Entity Linking Systems

The entity linking ensemble we have built includes
eight component systems. Given a span of text,
each component links the entities in text to zero
or more matching concepts in UMLS. The ensem-
ble examines all concepts produced by each com-
ponent system for the given span and determines
the final entity linking outcome. All the compo-
nent systems use traditional rule-based methods
and thus only perform well on certain types of con-
cepts. The errors produced by these base systems
are de-correlated and our goal is to leverage the
systems to the fullest by using carefully designed
auxiliary features. We used the following compo-
nent systems in our ensemble.

Medical Concept Resolution: Three of the
components systems are variations of the Medical
Concept Resolution (MCR) approach introduced
in (Aggarwal et al., 2015). The MCR systems find
UMLS concepts that best capture the meaning of
the input span as expressed in the textual context
where the span appears. The algorithms consist
of two main steps: candidate overgeneration and
candidate ranking. Candidate overgeneration finds
all concepts having any variant containing any of
the tokens in the mention text. This step results
in a large number of candidate concepts, many
of them irrelevant. In the second step, the can-
didate concepts are ranked by measuring the simi-
larity between mention context and candidate con-
text. The mention context is a window of text sur-
rounding the span. The candidate context is gen-
erated differently by each of the three MCR sys-
tems. Both the span context and the candidate con-
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text are treated as IDF-weighted bags-of-words for
computing their cosine similarity. The higher the
cosine similarity, the higher the rank of the candi-
date concept for the given span. The three varia-
tions of the MCR systems used are:

e Gloss-Based MCR (GBMCR): generates the
candidate context from the concept defini-
tions in UMLS. In GBMCR, candidates are
ranked according to the similarity between
the words in the span mention (and its con-
text) and the words in the UMLS definitions
of the candidate.

e Neighbor-Based MCR (NBMCR): generates
the candidate context from the set of vari-
ants of the candidate’s neighbors in UMLS.
Neighbors are CUIs related to the candiate
CUI by any of a select set of UMLS semantic
relations. In NBMCR, candidates are ranked
according to the similarity between the words
in the span+context and the words in the vari-
ants of the candidate’s neighbors.

Variants-Based MCR (VBMCR): generates
the candidate context from the candidate’s
variants in UMLS. In VBMCR, candidates
are ranked according to the similarity be-
tween the words in the span+context and the
words in the candidate’s variants.

Concept Mapper: Apache Concept Mapper
matches text to dictionary entries. The dictionary
contains surface forms and the concept identifiers
those surface forms map to. The system included
in the ensemble is based on a dictionary derived
from the complete set of UMLS variants. Prepro-
cessing of UMLS variants removes some supreflu-
ous acronyms (e.g. “nos” = “not otherwise spec-
ified”; “nec” = “not elsewhere classified””). The
dictionary is also expanded beyond the UMLS
variants by including adjective-to-noun and plural-
to-singular transformations, as well as additional
spelling variants and synonymous phrases derived
from wikipedia redirect pages.

CUI Finder Verbatim (CFV): CFV (Aggar-
wal et al., 2015) is a dictionary-based system sim-
ilar to ConceptMapper with advanced matching
algorithms and synonym expansion. If no con-
cept is found when matching the dictionary us-
ing the entire span, CFV attempts to find concepts
for smaller windows by removing words from the
span iteratively. The algorithm considers both left-
to-right and right-to-left shrinking of the span. If



no concepts are found, it reduces the window size
further. As soon as any concept is found, the algo-
rithm stops, returning all concepts found for sub-
spans of the given window size at any position
within the original span.

MetaMap: This system is provided by the Na-
tional Library of Medicine for detecting UMLS
concepts in medical text.> It is NLP-based and
uses domain-specific knowledge to map text to
concepts. The ensemble includes MetaMap con-
figured with the default settings.

¢TAKES: Apache cTAKES? is an open source
entity recognition system, originally developed at
Mayo Clinic for identifying UMLS concepts in
electronic medical records. cTAKES implements
a terminology-agnostic dictionary lookup algo-
rithm. Through the dictionary lookup, each named
entity is mapped to a concept from the terminol-
ogy. The dictionary lookup includes permutation
of words in the spans, exact matches of the span
and canonical forms of the words.

Structured Term Recognizer (STR): This sys-
tem takes a span of text as input and produces
a list of possible UMLS concepts for that span,
as well as semantic types, if desired. Concept
recognition proceeds in two phases: UMLS candi-
date generation and scoring of the candidate con-
cepts. The candidate UMLS concepts are found
by an inverted index, mapping tokens in the con-
cepts to the concepts themselves. Once the can-
didate UMLS concepts are found, they are scored
for similarity with the input span based on shared
tokens and shared stems.

3 Stacking With Auxiliary Features

In this section we describe our algorithm and the
auxiliary features used for classification. Figure 1
shows an overview of our ensembling approach.

3.1 Stacking

Stacking uses a meta-classifier to combine the out-
puts of multiple underlying systems. The stacker
learns a classification boundary based on the con-
fidence scores provided by individual systems for
each possible output. Stacking has been shown to
improve performance on tasks such as slot filling
and tri-lingual entity linking (Viswanathan et al.,
2015; Rajani and Mooney, 2016).

2MetalMap: http://metamap.nlm.nih.gov/
3cTAKES: https://ctakes.apache.org/
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System N-1
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Figure 1: Ensemble Architecture using Stacking
with Auxiliary Features. Given an input span, the
ensemble judges every possible concept produced
by the component systems and determines the final
entity linking output.

3.2 Auxiliary Features

Stacking relies on systems producing a confidence
score for every output. However, many times
systems do not produce confidence scores or the
scores produced are not probabilities or well cali-
brated and cannot be meaningfully compared. In
such circumstances, it is beneficial to have other
reliable auxiliary features. Auxiliary features en-
able the stacker to learn to rely on systems that not
just agree on an output but also the provenance or
the source of the output and other supporting evi-
dence. We used four types of auxiliary features as
part of our ensembling approach, described below.

32.1 CUI type

Every CUI in UMLS is associated with one or
more semantic types (out of roughly 130 types).
For example, the types associated with the CUI
C0000970 (acetaminophen) are T109 (Organic
chemical) and T121 (Pharmacologic substance).
The CUI type is represented by a binary vector
of size 130. The CUI type vector has ones for each
associated semantic type of the CUI under consid-
eration and zeros elsewhere. This CUI type vector
is used as an auxiliary feature for ensembling. The
CUI type enables the stacker to learn to rely on
systems that perform better for certain CUI types.

3.2.2 Span-CUI document similarity

The second auxiliary feature is the cosine similar-
ity between the tf-idf vectors of the words in the
mention span and the words in the candidate CUI
documents. For each CUI in UMLS, we created
a pseudo document which we call the CUI docu-
ment. The CUI document is a concatenation of the



following information from UMLS:

1. CUI ID and label; for example, C0000970
(acetaminophen)

. Names of the types of the CUI,; e.g., Organic
Chemical; Pharmacologic Substance

. Definition text for the CUI; e.g., analgesic
antipyretic derivative of acetanilide; weak
antiinflammatory properties and is used as
a common analgesic, but may cause liver,
blood cell, and kidney damage.

. All variants for the CUI; Ac-

etaminophen, Paracetamol

e.g.,

. Select semantic relations between the CUI
under consideration and other CUISs; for ex-
ample, (may_treat: fever), (may_treat: pain).

The intuition behind using this feature is that the
span would have a greater lexical overlap with
a CUI document that it links to and thus have a
higher similarity score.

3.2.3 Context-CUI document similarity

This auxiliary feature is very much like the span-
CUI document similarity feature. For this feature
as well, we use the pseudo CUI documents cre-
ated using UMLS. However, instead of using the
span for calculating the similarity we use the entire
context surrounding the span. In the earlier exam-
ple, the entire sentence “The patient reports suffer-
ing from back pain for several years prior to treat-
ment” is the context. We note that for short docu-
ments, the context may be the entire document that
contains the span to be linked. This means that
some unique spans could have the same context.
The context-CUI document similarity is the cosine
similarity between the f-idf vectors of words in the
context and words in the CUI document.

3.2.4 Word embeddings

The auxiliary features discussed so far only cap-
ture the superficial lexical aspects of the data
used for ensembling. The word embeddings fea-
tures capture the semantic dimension of the data.
We trained the continuous bag of words model
(Mikolov et al., 2013) on the entire UMLS knowl-
edge base with word vector dimension of 200 and
window-size of 10. Ling et al. (2015) show that
these parameters enable capturing long range de-
pendencies. In this way we obtain a vector repre-
sentation for every word in UMLS. We note that
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we chose the UMLS corpus as opposed to medical
documents so as to have better CUI coverage.

We used these word vectors to create the CUI
document vector representation in the following
way. Recall that the CUI document is a pseudo
document made up of information about the CUI
in UMLS. In order to obtain the embedding for a
context, span or document, we use the technique
described in (Le and Mikolov, 2014). We add up
all the embedding vectors representing the words
in the CUI document and normalize the sum by
the number of words. The resultant vector repre-
sents the CUI document embedding. Similarly, we
also obtain the span and the context embeddings
by adding and normalizing the vectors represent-
ing the words in the span and context respectively.
Note that if a word in the span or context does
not have a vector representation then we just ig-
nore it. Finally, we measure the cosine similarity
between the span-CUI document and context-CUI
document embedding vectors and use it as a fea-
ture for our classifier. Representing the concepts
in vector space enables the stacker to learn deep
semantic patterns for cases where just lexical in-
formation is not sufficient.

4 Experimental Results

4.1 Baselines

We compare our approach to several supervised
and unsupervised baselines. The first is Union
which accepts all predictions for all systems to
maximize recall. It classifies all span-CUI links
as correct and always includes them.

The second baseline is Voting. For this ap-
proach, we vary the threshold on the number of
systems that must agree on a span-CUI link from
one to all. This gradually changes the system be-
havior from union to intersection of the links. We
identify the threshold that results in the highest F1
score on the training dataset. We use this threshold
for the voting baseline on the test dataset.

The third baseline is an oracle threshold version
of Voting. Since the best threshold on the training
data may not necessarily be the best threshold for
the test data, we identify the best threshold for the
test data by plotting a precision-recall curve and
finding the best F1 score for the voting baseline.
Note that this gives an upper bound on the best
results that can be achieved with voting, assuming
an optimal threshold is chosen. Since the upper
bound can not be predicted without using the test



dataset, this baseline has an unfair advantage.

In addition to the above common baselines, we
also compare our approach to a state-of-the-art en-
sembling system, Bipartite Graph based Consen-
sus Maximization (BGCM) (Gao et al. (2009)). In
addition to the output of supervised models, this
ensembling technique uses unsupervised models
to provide additional constraints and evidence to
the classification algorithm. The rationale behind
this approach is that objects that are in the same
cluster should be more likely to receive the same
class label compared to the objects in different
clusters. The objective is to predict the class la-
bel of an instance in a way that favors agreement
between supervised components and at the same
time satisfies the constraints enforced by the clus-
tering models. BGCM ensembles multiple mod-
els by performing an optimization over a bipartite
graph of systems and outputs.

4.2 Dataset Description

All systems and baselines were evaluated on three
datasets. Scores reflect the quality of concepts as-
signed to text spans, as decided by human judges.
Detecting span boundaries is not part of this eval-
uation — all systems are given the same span as
input. Annotations were performed by several hu-
man judges. For scoring, each text span was paired
with a list of concepts produced by all component
systems. Annotators marked each span-concept
pair correct or incorrect.

The MCR dataset (Aggarwal et al., 2015) re-
sulted from running a CRF-based entity recog-
nition system that extracted 1,570 clinical fac-
tors from 100 short descriptions (averaging 8 sen-
tences, 100 words) of patient scenarios. The an-
notated dataset contains a subset of 400 spans re-
sulting in 6,139 annotated span-CUI pairs. The
average of the pairwise kappa scores for annotator
agreement on the MCR dataset was 0.56.

The i2b2 dataset (Uzuner et al., 2011) is based
on the annotated patient discharge summaries re-
leased with the 2010 i2b2/VA challenge. The con-
cept extraction task was to identify and extract the
text span corresponding to patient medical prob-
lems, treatments and tests in unannotated patient
record text. We created an entity linking dataset
from a random subset of 100 annotated text spans.
We ran all available entity linking systems and
produced 2,224 annotated span-CUI pairs. The
average pairwise kappa score for annotator agree-
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ment on the i2b2 dataset was 0.52.

The Electronic Medical Record dataset (EMR)
is a private dataset containing spans of medical
terms identified in doctors’ notes within patient
medical records. This dataset has 350 text spans
with 3,991 annotated span-CUI pairs. Annotators
for the EMR dataset reconciled their annotations
to build the ground truth.

4.3 Evaluation Metrics

As noted in section 1, UMLS often has multiple
distinct CUIs for the same semantic concept. So
for a given span from a dataset, there may be many
true positive concepts in the ground truth. This
leads to two possible scoring schemes: CUI level
and Span level. For CUI level scoring, every CUI
in the ground truth is a ground truth positive in-
stance. A CUI produced by the Entity Linking
system for a given span is a true positive if it is in
the ground truth for that span and a false positive
if it is not. CUIs in the ground truth for the span
that are not produced by the system are counted
as false negatives. Spans that have many CUIs in
the ground truth, therefore, will have more weight
in the precision and recall than spans with fewer
CUIs. But since the number of appropriate CUIs
for a span is often a side effect of the imperfect
automatic merging of concepts in building UMLS,
the bias is unnatural.

An alternative scoring scheme awards only one
true positive, false positive or false negative for
each span, not each CUI. For this span level scor-
ing, we report two versions of the metrics. The
first version, which we call “Factor Level” in
the reported results, aggregates CUI scores using
MAX. The system scores a true positive if any of
the CUIs it produces are in the ground truth for the
span. It scores a false positive if none of its CUIs
are in the ground truth. It scores a false negative if
it produces no CUIs and there is at least one CUI
in the ground truth.

The second version of span level scoring ac-
counts for the fact that the system may produce
a mixture of correct and incorrect CUIs for the
same span. Each span still has a weight of one in
the overall precision and recall, but the system’s
score for “true positiveness” and “false positive-
ness” can be a real number between 0 and 1. We
call this scoring scheme “Quantum”. The quan-
tum true positive score for a span is the number
of CUIs produced by the system that are in the



CUI Level Factor Level Quantum
Approach
| R F1 P R F1 P R F1
GBMCR 0.349 0.242 0.286 0.395 0437 0415 0357 0268 0.306
NBMCR 0414 0.179 0250 0463 0.511 0486 0423 0.163 0.236
VBMCR 0496 0.215 0300 0.548 0.605 0.575 0.513 0.198 0.285
CFV 0.587 0405 0479 0903 0461 0.611 0.716 0.188 0.298
CTakes 0.384 0.245 0299 0.711 0.577 0.637 0.498 0.202 0.287
MetaMap 0.447 0219 0.293 0.623 0.652 0.637 0535 0.215 0.306
CMap 0.179 0.549 0270 0.802 0.870 0.834 0.305 0.461 0.367
STR 0.623 0.217 0322 0.623 0.688 0.654 0.623 0.217 0.322
Union 0.207 0.797 0329 0.888 0.981 0.932 0.278 0.765 0.408
Majority Voting 0.746 0.182 0.293 0.768 0.522 0.622 0.745 0.169 0.275
Oracle Voting 0.626 0.290 0396 0.723 0.707 0.715 0.629 0.251 0.359
BGCM 0481 0430 0454 0.753 0.822 0.786 0.525 0.368 0.433
Stacking 0481 0.508 0.494 0.785 0.848 0.815 0.501 0412 0.452
+ CUI Type 0474 0573 0519 0816 0.889 0.851 0.484 0502 0.493
+ Span & Context Similarity 0.472 0.575 0.519 0.811 0.886 0.847 0.485 0.508 0.496
+ CBOW embedding 0.567 0.500 0.532 0.824 0.892 0.857 0491 0.507 0.499
Table 1: Results on the MCR dataset.
ground truth for the span divided by the total num-
ber of CUIs produced by the system (i.e., the span- 09 7 —Preision ~B-Recall ~4~F1
level Precision). Quantum false positive score is 057 T+
the number of incorrect CUIs produced by the sys- 0.5 1 T T
tem divided by the total number of CUIs produced. 053
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ablations of the auxiliary features using stacking.
Tables 1, 2 and 3 show performance on the MCR,
i2b2 and EMR datasets respectively.

Although we observe similar trends across all
the datasets, no single individual model performs
better than others across all the evaluation met-
rics. This led us to conclude that each individual
model is optimized for a particular type of entity
or data. For example, a model that is good at link-
ing medical drugs might not perform as well on
linking medical diseases. In order to leverage the
strengths of each individual model, we ensemble
them into one powerful model that works across
all datasets as well as different evaluation metrics.

As expected, the Union baseline obtains the best
recall and Majority Voting has the highest preci-
sion across all datasets. Oracle Voting is optimized
for F1 and thus obtains an F1 higher than Majority
Voting. Vanilla stacking beats the best component
and baseline systems’ F1 scores for CUI level and
quantum metrics on all datasets. Adding each aux-
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Figure 2: Ablation on the component systems in
the ensemble for the MCR dataset using the CUI
level metric. The systems are arranged in decreas-
ing order of F1 score.

iliary feature further boosts the performance and
we obtain the highest F1 for all datasets using all
the features combined. Stacking outperforms the
BGCM ensembling baseline on all datasets.

For a deeper understanding of the results, we
performed ablation tests on the systems used in the
final ensemble. Figure 2 shows the performance
of the ensemble with each component ablated in
turn. This experiment shows that every component
system contributes to the ensemble in either preci-
sion, recall or both. While each component con-
tributes to the overall performance, the strength of
the ensemble is determined by the combination of



A CUI Level Factor Level Quantum
pproach
P R F1 P R F1 P R F1
GBMCR 0.507 0375 0431 0.790 0.807 0.798 0.515 0427 0.467
NBMCR 0.478 0356 0408 0.779 0.796 0.787 0.486 0.403 0.441
VBMCR 0.554 0404 0467 0.800 0.817 0.809 0.564 0.468 0.511
CFV 0.173 0.457 0251 0.884 0.903 0.894 0.577 0327 0417
CTakes 0.564 0213 0309 0.861 0.731 0.791 0.677 0.195 0.303
MetaMap 0.565 0.154 0242 0.750 0.742 0.746 0.647 0.153 0.248
CMap 0.216 0360 0270 0.894 0903 0.898 0410 0260 0.318
STR 0.825 0.176 0290 0.833 0.860 0.847 0.566 0.236 0.333
Union 0.191 0.855 0312 0969 1.000 0.984 0.352 0.849 0.498
Majority Voting 0.705 0.189 0298 0.846 0.828 0.837 0.766 0.176 0.286
Oracle Voting 0.624 0270 0.373 0.874 0.893 0.883 0.709 0.227 0.344
BGCM 0.469 0406 0435 0938 0968 0.952 0.509 0.386 0.439
Stacking 0.434 0.697 0535 0958 0989 0974 0481 0.655 0.555
+ CUI Type 0.525 0.730 0.611 0927 0957 0942 0.547 0.563 0.555
+ Span & Context Similarity 0.528 0.756  0.622 0.927 0.957 0.942 0.544 0.639 0.588
+ CBOW embedding 0.528 0.756 0.622 0938 0968 0.952 0.546 0.700 0.607
Table 2: Results on the i2b2 dataset.
Approach CUI Level Factor Level Quantum
P R F1 P R F1 P R F1
GBMCR 0.338 0.134 0.192 0369 0.351 036 0360 0315 0.196
NBMCR 0.381 0.151 0.217 0410 0.390 0400 0396 0.148 0.216
VBMCR 0.564 0.224 0321 0.618 0.589 0.603 0.600 0225 0.327
CFV 0.510 0.353 0417 0914 0.607 0.729 0.692 0249 0.366
CTakes 0.403 0321 0357 0.706 0.628 0.665 0.527 0.268 0.355
MetaMap 0460 0.220 0.298 0.575 0.568 0.571 0.527 0223 0.313
CMap 0.205 0.597 0305 0.761 0.766 0.763 0.334 0.597 0.428
STR 0.714 0.284 0406 0.714 0.748 0.730 0.714 0.284 0.406
Union 0.187 0.739 0299 0.857 0.852 0.854 0.272 0.676 0.388
Majority Voting 0.879 0.225 0359 0912 0.561 0.695 0.894 0220 0.353
Oracle Voting 0.668 0.297 0412 0.820 0.661 0.732 0.719 0.276 0.399
BGCM 0453 0419 0435 0.801 0.809 0.805 0.482 0.409 0.442
Stacking 0.443 0517 0477 0794 0.832 0.812 0483 0.463 0475
+ CUI Type 0.559 0.548 0.554 0.807 0.778 0.792 0.571 0.436 0.495
+ Span & Context Similarity  0.593  0.554 0.573 0.820 0.781 0.800 0.616 0.443 0.515
+ CBOW embedding 0.667 0.549 0.602 0.830 0.775 0.801 0.669 0.439 0.530

Table 3: Results on the EMR dataset.

the component systems. The ablation of the CMap
system has the highest impact on the ensemble, re-
ducing the F1 score by 5.2%. We obtained similar
plots for the factor level and quantum metrics and
we expect to see similar trends for the i2b2 and the
EMR datasets as well.

5 Discussion

The experimental results presented in section 4.4
confirm that the different component systems
show significantly different behavior on different
metrics for different datasets. No individual sys-
tem was universally the best. CMap had consis-
tently good Recall but low Precision. CFV scored
well in certain circumstances on precision, re-
call and F1 score, but this varied from dataset to
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dataset and metric to metric. STR usually had rel-
atively high precision, but low recall, and VBMCR
had very good F1 scores on i2b2, but was less im-
pressive on the other datasets.

These observations imply good conditions for
ensembling to make a difference. Even so, the
best baseline ensemble only outperforms the best
component system on F1 in four of the nine ex-
periments (metric-dataset combinations). Stack-
ing outperforms the best component system in all
nine, and outperforms the best ensembling base-
line for six of the nine — all of the CUI level met-
rics and quantum, but never at the factor level. The
factor level scoring is much more generous, but it
is not immediately clear why this would benefit
naive ensembling over stacking.



Auxiliary features almost always improve
stacking. Again the exception is with factor level
scoring. Interestingly, auxiliary features almost
universally improve precision significantly with-
out too damaging an effect on recall. This result
suggests that it would be worthwhile experiment-
ing with the precision-vs-recall bias of component
systems to see if Stacking with auxiliary features
could be used, for example, to recover precision
with recall-biased components.

6 Related Work

The problem of entity linking has received con-
siderable attention in the research community.
Several community tasks are focused specifically
on the medical domain and are addressing the
problem of linking disease/disorder entities to
SNOMED CT.* SNOMED CT concepts are also
included in UMLS.

The ShARe/CLEF eHealth Evaluation Lab
2013 (Suominen et al., 2013) consists of a collec-
tion of tasks focused on facilitating patients’ un-
derstanding of their medical discharge summaries.
The assumption is that an improved understand-
ing of medical concepts in such documents can be
achieved by normalizing all health conditions to
standardized SNOMED CT concepts. Using these
concepts, the medical documents can further be
connected to other patient friendly sources.

The Open Biomedical Annotator (OBA) (Jon-
quet et al., 2009) is an ontology-based Web service
that annotates public datasets with biomedical on-
tology concepts, including concepts from UMLS.
The OBA is based on dictionary matching. The
dictionary is a list of strings that identify ontology
concepts. The dictionary is constructed by access-
ing biomedical ontologies and extracting all con-
cept names, their synonyms or labels. The web
service takes as input the user’s free text. The tool
recognizes concepts using string matching on the
dictionary and outputs the concept annotations.

There are several notable approaches to perform
entity linking in the open domain. These open
domain approaches often deal with named enti-
ties. The linking targets in this case are often sin-
gle, unambiguous, specific concepts. The problem
of finding domain-specific concepts, on the other
hand, can be more challenging as there may be
appropriate concepts at different levels of speci-
ficity, and concepts are more compositional and

4SNOMED CT: http://www.snomed.org/
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contextual. Approaches such as DBPedia Spot-
light (Mendes et al., 2011) and AIDA (Hoffart
etal., 2011) use Wikipedia to find the links of rec-
ognized entity mentions.

To overcome challenges of obtaining labeled
medical datasets, Zheng et al. (2015) proposed an
unsupervised approach for entity linking. More
traditional sieve-based techniques have been used
for this task recently (D’Souza and Ng, 2015).

Using ensembling techniques for open domain
entity linking has shown good performance in
the past (Rajani and Mooney, 2017) on the Tri-
lingual Entity Discovery and Linking (TEDL)
task. TEDL is an entity linking task conducted by
NIST. The goal of this task is to discover entities
in the three included languages (English, Span-
ish and Chinese) from a supplied text corpus and
link these entities to an existing English knowl-
edge base (a reduced version of FreeBase).

Rajani and Mooney (2016) proposed an ap-
proach for combining multiple supervised and un-
supervised models for entity linking. Their tech-
nique improves the previous result on the TEDL
task. Another ensembling approach is Mixtures
of Experts (Jacobs et al., 1991) which employs
divide-and-conquer principle to soft switch be-
tween learners covering different sub-spaces of the
input using Expectation-Maximization (EM). Our
work is the first we know of to use ensembling for
entity linking in the medical domain.

7 Conclusion

We have identified an entity linking task in the
medical domain for which existing technologies
perform differently on different metrics for differ-
ent datasets. Such an environment presents an ob-
vious opportunity for ensembling techniques.

We have built a stacking ensembler using mul-
tiple diverse entity linking systems. The auxiliary
features further boost the stacker’s performance.
Experiments confirm that naive ensembling does
not always outperform component entity linking
systems, but that vanilla stacking does. Adding
auxiliary features to the stacker almost universally
improves its precision without harming recall, giv-
ing it generally the best F1 scores overall.

Our model is able to fuse additional relevant
knowledge from multiple systems and leverage
them to improve prediction.
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Abstract

The goal of the BioASQ challenge is to
engage researchers into creating cutting-
edge biomedical information systems.
Specifically, it aims at the promotion
of systems and methodologies that are
able to deal with a plethora of different
tasks in the biomedical domain. This is
achieved through the organization of chal-
lenges. The fifth challenge consisted of
three tasks: semantic indexing, question
answering and a new task on information
extraction. In total, 29 teams with more
than 95 systems participated in the chal-
lenge. Overall, as in previous years, the
best systems were able to outperform the
strong baselines. This suggests that state-
of-the art systems are continuously im-
proving, pushing the frontier of research.

1 Introduction

The aim of this paper is twofold. First, we aim
to give an overview of the data issued during the
BioASQ challenge in 2017. In addition, we aim to
present the systems that participated in the chal-
lenge and evaluate their performance. To achieve
these goals, we begin by giving a brief overview of
the tasks, which took place from February to May
2017, and the challenge’s data. Thereafter, we pro-
vide an overview of the systems that participated
in the challenge. Detailed descriptions of some
of the systems are given in workshop proceedings.
The evaluation of the systems, which was carried
out using state-of-the-art measures or manual as-
sessment, is the last focal point of this paper, with
remarks regarding the results of each task. The
conclusions sum up this year’s challenge.

2 Overview of the Tasks

The challenge comprised three tasks: (1) a large-
scale semantic indexing task (Task 5a), (2) a ques-
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tion answering task (Task 5b) and (3) a funding
information extraction task (Task 5¢), described in
more detail in the following sections.

2.1 Large-scale semantic indexing - 5a

In Task 5a the goal is to classify documents from
the PubMed digital library into concepts of the
MeSH hierarchy. Here, new PubMed articles that
are not yet annotated by MEDLINE indexers are
collected and used as test sets for the evaluation of
the participating systems. In contrast to previous
years, articles from all journals were included in
the test data sets of task 5a. As soon as the an-
notations are available from the MEDLINE index-
ers, the performance of each system is calculated
using standard flat information retrieval measures,
as well as, hierarchical ones. As in previous years,
an on-line and large-scale scenario was provided,
dividing the task into three independent batches of
5 weekly test sets each. Participants had 21 hours
to provide their answers for each test set. Table
1 shows the number of articles in each test set of
each batch of the challenge. 12,834,585 articles
with 27,773 labels were provided as training data
to the participants.

2.2 Biomedical semantic QA - 5b

The goal of Task 5b was to provide a large-
scale question answering challenge where the sys-
tems had to cope with all the stages of a ques-
tion answering task for four types of biomedi-
cal questions: yes/no, factoid, list and summary
questions (Balikas et al., 2013). As in previous
years, the task comprised two phases: In phase A,
BioASQ released 100 questions and participants
were asked to respond with relevant elements from
specific resources, including relevant MEDLINE
articles, relevant snippets extracted from the arti-
cles, relevant concepts and relevant RDF triples.
In phase B, the released questions were enhanced
with relevant articles and snippets selected manu-

Proceedings of the BioNLP 2017 workshop, pages 4857,
Vancouver, Canada, August 4, 2017. (©2017 Association for Computational Linguistics



Labels

Batch Articles Ann(.)tated per
Articles .

Article

6,880 6,661 12.49

7,457 6,599 12.49

1 10,319 9,656 12.49

7,523 4,697 11.78

7,940 6,659 12.50

Total 40,119 34,272 12.39

7,431 7,080 12.40

6,746 6,357 12.62

2 5,944 5,479 12.87

6,986 6,526 12.65

6,055 5,492 12.41

Total 33,162 30,934 12.58

9,233 5,341 12.78

7,816 2,911 12.58

3 7,206 4,110 12.70

7,955 3,569 12.17

10,225 984 13.72

Total 42,435 21,323 12.68

Table 1: Statistics on test datasets for Task Sa.

ally and the participants had to respond with ex-
act answers, as well as with summaries in nat-
ural language (dubbed ideal answers). The task
was split into five independent batches and the two
phases for each batch were run with a time gap of
24 hours. In each phase, the participants received
100 questions and had 24 hours to submit their an-
swers. Table 2 presents the statistics of the train-
ing and test data provided to the participants. The
evaluation included five test batches.

Batch Size Documents Snippets
Train 1,799 11.86 20.38
Test 1 100 4.87 6.03
Test 2 100 3.93 5.13
Test 3 100 4.03 5.47
Test 4 100 3.23 4.52
Test 5 100 3.61 5.01
Total 2,299 10.14 17.09

Table 2: Statistics on the training and test datasets
of Task 5b. All the numbers for the documents and
snippets refer to averages.

2.3 Funding information extraction - 5c¢

Task 5c was introduced for the first time this year
and the challenge at hand was to extract grant in-
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formation from Biomedical articles. Funding in-
formation can be very useful; in order to estimate,
for example, the impact of an agency’s funding in
the biomedical scientific literature or to identify
agencies actively supporting specific directions in
research. MEDLINE citations are annotated with
information about funding from specified agen-
cies'. This funding information is either provided
by the author manuscript submission systems or
extracted manually from the full text of articles
during the indexing process. In particular, NLM
human indexers identify the grant ID and the fund-
ing agencies can be extracted from the string of the
grant ID?. In some cases, only the funding agency
is mentioned in the article, without the grant ID.

In this task funding information from MED-
LINE was used, as golden data, in order to train
and evaluate systems. The systems were asked
to extract grant information mentioned in the full
text, but author-provided information is not nec-
essarily mentioned in the article. Therefore, grant
IDs not mentioned in the article were filtered out.
This filtering also excluded grant IDs deviating
from NLM’s general policy of storing grant IDs
as published, without any normalization. When
an agency was mentioned in the text without a
grant ID, it was kept only if it appeared in the list
of agencies and abbreviations provided by NLM.
Cases of misspellings or alternative naming of
agencies were removed. In addition, information
for funding agencies that are no longer indexed by
NLM was omitted. Consequently, the golden data
used in the task consisted of a subset of all funding
information mentioned in the articles.

During the challenge, a training and a test
dataset were prepared. The test set of MED-
LINE documents with their full-text available in
PubMed Central was released and the participants
were asked to extract grant IDs and grant agen-
cies mentioned in each test article. The participat-
ing systems were evaluated on (a) the extraction
of grant IDs, (b) the extraction of grant agencies
and (c) full-grant extraction, i.e. the combination
of grant ID and the corresponding funding agency.
Table 3 contains details regarding the datasets for
training and test.

"https://www.nlm.nih.gov/bsd/grant_
acronym.html

https://www.nlm.nih.gov/bsd/mms/
medlineelements.html#gr



Grant me

] . Ti
Dataset Articles IDs Agencies Period

Training 62,952 111,528 128,329 2005-13
Test 22,610 42,711 47,266 2015-17

Table 3: Dataset overview for Task 5c.

3 Overview of Participants

3.1 Task 5a

For this task, 10 teams participated and results
from 31 different systems were submitted. In the
following paragraphs we describe those systems
for which a description was obtained, stressing
their key characteristics. An overview of the sys-
tems and their approaches can be seen in Table 4.

System Approach
Search svstem search engine, UIMA
y ConceptMapper
MZ tf-idf, .LDA., BR
classification
recurrent neural
Sequencer
networks
DeepMesh d2v, tf-idf, MESHIabeler
d2v, tf-idf, LLDA,
AUTH SVM, ensembles
bigrams, Luchene Index,
Iria k-NN, ensembles,

UIMA ConceptMapper

Table 4: Systems and approaches for Task 5a. Sys-
tems for which no description was available at the
time of writing are omitted.

The “Search system” and its variants were de-
veloped as a UIMA-based text and data mining
workflow, where different search strategies were
adopted to automatically annotate documents with
MeSH terms. On the other hand, the “MZ” sys-
tems applied Binary Relevance (BR) classifica-
tion, using TF-IDF features, and Latent Dirich-
let allocation (LDA) models with label frequen-
cies per journal as prior frequencies, using regres-
sion for threshold prediction. A different approach
is adopted by the “Sequencer” systems, devel-
oped by the team from the Technical University of
Darmstadt, that considers the task as a sequence-
to-sequence prediction problem and use recurrent
neural networks based algorithm to cope with it.

The “DeepMeSH” systems implement docu-
ment to vector (d2v) and tf-idf feature embeddings
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(Peng et al., 2016), alongside the MESHLabeler
system (Liu et al., 2015) that achieved the best
scores overall, integrating multiple evidence us-
ing learning to rank (LTR). A similar approach,
with regards to the d2v and tf-idf representations
of the text, is followed by the “AUTH” team. Re-
garding the learning algorithms they’ve extended
their previous system (Papagiannopoulou et al.,
2016), improving the Labeled LDA and SVM
base models, as well as introducing a new ensem-
ble methodology based on label frequencies and
multi-label stacking. Last but not least, the team
from the University of Vigo developed the “Iria”
systems. Building upon their previous approach
(Ribadas et al., 2014) that uses an Apache Lucene
Index to provide most similar citations, they de-
veloped two systems that follow a multilabel k-
NN approach. They also incorporated token bi-
grams and PMI scores to capture relevant mul-
tiword terms through a voting ensemble scheme
and the ConceptMapper annotator tool, from the
Apache UIMA project (Tanenblatt et al., 2010), to
match subject headings with the citation’s abstract
text.

Baselines: During the challenge, two systems
served as baselines. The first baseline is a state-
of-the-art method called Medical Text Indexer
(MTI) (Mork et al., 2014) with recent improve-
ments incorporated as described in (Zavorin et al.,
2016). MTT is developed by the National Library
of Medicine (NLM) and serves as a classification
system for articles of MEDLINE, assisting the in-
dexers in the annotation process. The second base-
line is an extension of the system MTI, incorpo-
rating features of the winning system of the first
BioASQ challenge (Tsoumakas et al., 2013).

3.2 Task Sb

The question answering task was tackled by 51
different systems, developed by 17 teams. In the
first phase, which concerns the retrieval of infor-
mation required to answer a question, 9 teams
with 25 systems participated. In the second phase,
where teams are requested to submit exact and
ideal answers, 10 teams with 29 different sys-
tems participated. Two of the teams participated
in both phases. An overview of the technologies
employed by each team can be seen in Table 5.
The “Basic QA pipeline” approach is one of
the two that participated in both Phases. It uses
MetaMap for query expansion, taking into account



Systems Phase Approach
Basic QA A B MetaMap, BM25
pipeline
NER, UMLS, SAP
Olelo A, B HANA, SRL
USTB A sequential dependence
models, ensembles
MESHLabeler,
fdu A Language model, word
similarity
UNCC A Stanfqrd Parse‘r,
Semantic Indexing
MQU B deep learning, r.1eural
nets, regression
agglomerative
clustering, tf-idf, word
Oaga B embeddings, maximum
margin relevance
PubTator, Standford
LabZhu POS tool, ranking
DeepQA B FastQA, SQuAD
. UMLS, BM?25,
sarrouti _ .
dictionaries

Table 5: Systems and approaches for Task 5b. Sys-
tems for which no information was available at the
time of writing are omitted.

the text and the title of each article, and the BM25
probabilistic model (Robertson et al., 1995) in or-
der to match questions with documents, snippets
etc. The same goes for phase B, except for the
exact answers, where stop words were removed
and the top-k most frequent words were selected.
“Olelo” is the second approach that tackles both
phases of task B. It is built on top of the SAP
HANA database and uses various NLP compo-
nents, such as question processing, document and
passage retrieval, answer processing and multi-
document summarization based on previous ap-
proaches (Schulze et al., 2016) to develop a com-
prehensive system that retrieves relevant informa-
tion and provides both exact and ideal answers
for biomedical questions. Semantic role labeling
(SRL) based extensions were also investigated.

One of the teams that participated only in phase
A, is “USTB” who combined different strategies to
enrich query terms. Specifically, sequential depen-
dence models (Metzler and Croft, 2005), pseudo-
relevance feedback models, fielded sequential de-
pendence models and divergence from random-
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ness models are used on the training data to cre-
ate better search queries. The “fdu” systems, as in
previous years (Peng et al., 2015), use a language
model in order to retrieve relevant documents and
keyword scoring with word similarity for snippet
extraction. The “UNCC” team on the other hand,
focused mainly on the retrieval of relevant con-
cepts and articles using the Stanford Parser (Chen
and Manning, 2014) and semantic indexing.

In Phase B, the Macquarie University (MQU)
team focused on ideal answers (Molla, 2017), sub-
mitting different models ranging from a “triv-
ial baseline” of relevant snippets to deep learn-
ing under regression settings (Malakasiotis et al.,
2015) and neural networks with word embeddings.
The Carnegie Mellon University team (“OAQA”),
focused also on ideal answer generation, build-
ing upon previous versions of the “OAQA” sys-
tem. They used extractive summarization tech-
niques and experimented with different biomedi-
cal ontologies and algorithms including agglom-
erative clustering, Maximum Marginal Relevance
and sentence compression. They also introduced
a novel similarity metric that incorporates both se-
mantic information (using word embeddings) and
tf-idf statistics for each sentence/question.

Many systems used a modular approach break-
ing the problem down to question analysis, candi-
date answer generation and answer ranking. The
“LabZhu” systems, followed this approach, based
on previous years’ methodologies (Peng et al.,
2015). In particular, they applied rule-based ques-
tion type analysis and used Standford POS tool
and PubTator for candidate answer generation.
They also used word frequencies for candidate an-
swer ranking. The “DeepQA” systems focused on
factoid and list questions, using an extractive QA
model, restricting the system to output substrings
of the provided text snippets. At the core of their
system stands a state-of-the-art neural QA system,
namely FastQA (Weissenborn et al., 2017), ex-
tended with biomedical word embeddings. The
model was pre-trained on a large-scale open-
domain QA dataset, SQuAD (Rajpurkar et al.,
2016), and then the parameters were fine-tuned on
the BioASQ training set. Finally, the “sarrouti”
system, from Morocco’s USMBA, uses among
others a dictionary approach, term frequencies of
UMLS metathesaurus’ concepts and the BM25
model.

Baselines: For this challenge the open source



OAQA system proposed by (Yang et al., 2016) for
BioASQ4 was used as a strong baseline. This sys-
tem, as well as its previous version (Yang et al.,
2015) for BioASQ3, had achieved top perfor-
mance in producing exact answers. The system
uses an UIMA based framework to combine dif-
ferent components. Question and snippet pars-
ing is based on ClearNLP. MetaMap, TmTool, C-
Value and LingPipe are used for concept identi-
fication and UMLS Terminology Services (UTS)
for concept retrieval. In addition, identification of
concept, document and snippet relevance is based
on classifier components and scoring, ranking and
reranking techniques are also applied in the final
steps.

3.3 Task 5c

In this inaugural year for task c, 3 teams partici-
pated with a total of 11 systems. A brief outline of
the techniques used by the participating systems is
provided in table 6.

Systems Approach

regions of interest, SVM, regular

Simple expressions, hand-made rules,
char-distances, ensemble
regions of interest, SVM, tf-idf of
DZG bigrams, HMMs, MaxEnt, CRFs,

ensemble

AUTH regions of interest, regular expressions

Table 6: Overview of the methodologies used by
the participating systems in Task 5c.

The Fudan University team, participated with
a series of similar systems (“Simple” systems) as
well as their ensemble. The general approach
included the following steps: First, the articles
were parsed and some sections, such as affilia-
tion or references, were removed. Then, using
NLP techniques, alongside pre-defined rules, each
paragraph was split into sentences. These sen-
tences were classified as positive (i.e. contain-
ing grant information) or not, using a linear SVM.
The positive sentences were scanned for grant IDs
and agencies through the use of regular expres-
sions and hand-made rules. Finally, multiple clas-
sifiers were trained in order to merge grant IDs and
agencies into suitable pairs, based on a wide range
of features, such as character-level features of the
grant ID, the agency in the sentence and the dis-
tance between the grant ID and the agency in the
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sentence.

The “DZG” systems followed a similar method-
ology, in order to classify snippets of text as pos-
sible grant information sources, implementing a
linear SVM with tf-idf vectors of bigrams as in-
put features. However, their methodology dif-
fered from that of Fudan in two ways. Firstly,
they used an in-house-created dataset consisting
of more than 1,600 articles with grant information
in order to train their systems. Secondly, the sys-
tems deployed were based on a variety of sequen-
tial learning models namely conditional random
fields (Finkel et al., 2005), hidden markov mod-
els (Collins, 2002) and maximum entropy models
(Ratnaparkhi, 1998). The final system deployed
was a pooling ensemble of these three approaches,
in order to maximize recall and exploit comple-
mentarity between predictions of different mod-
els. Likewise, the AUTH team, with systems “As-
clepius”, “Gallen” and “Hippocrates” emphasized
on specific sections of the text that could contain
grant support information and extracted grant IDs
and agencies using regular expressions.

Baselines: For this challenge a baseline was
provided by NLM (“BioASQ Filtering”) which is
based on a two-step procedure. First, the system
classifies snippets from the full-text, as possible
grant support “zones” based on the average prob-
ability ratio, generated separately by Naive Bayes
(Zhang et al., 2009) and SVM (Kim et al., 2009).
Then, the system identified grant IDs and agen-
cies in these selected grant support “zones”, using
mainly heuristic rules, such as regular expressions,
especially for detecting uncommon and irregularly
formatted grant IDs.

4 Results
4.1 Task 5a

Each of the three batches of task 5a was evaluated
independently. The classification performance of
the systems was measured using flat and hierar-
chical evaluation measures (Balikas et al., 2013).
The micro F-measure (MiF) and the Lowest Com-
mon Ancestor F-measure (LCA-F) were used to
choose the winners for each batch (Kosmopoulos
etal., 2013).

According to (Demsar, 2006) the appropriate
way to compare multiple classification systems
over multiple datasets is based on their average
rank across all the datasets. On each dataset the
system with the best performance gets rank 1.0,



System Batch 1 Batch 2 Batch 3
MiF LCA-F MiF LCA-F MiF LCA-F
authl 8.88 8.25 10.50 9.75 10.25 9.75
auth2 7.25 6.50 7.63 7.50 8.88 9.75
auth3 6.75 8.25 7.50 10.25 6.50 7.00
auth4 - - 7.38 8.25 9.63 9.75
auth5 - - 7.50 7.00 8.50 7.50
DeepMeSH1 1.88 1.88 1.00 2.00 1.00 1.50
DeepMeSH?2 1.00 1.00 3.00 3.00 2.50 2.75
DeepMeSH3 4.00 4.63 4.00 4.00 4.00 4.13
DeepMeSH4 5.00 4.38 5.00 5.50 4.88 5.63
DeepMeSH5 2.63 2.63 1.75 1.00 2.25 1.25
iria-1 - - 13.75 13.75 12.75 12.75
iria-2 - - - - 11.75 11.75
MZ1 10.75 10.75 - - - -
Optimize Macro
AUC - - - - 19.25 19.25
Optimize Micro
AUC - - - - 15.75 18.25
Search system-1 12.25 12.25 - - 13.75 13.25
Search system-2 13.25 13.25 - - 14.75 14.25
Search system-3 16.25 16.25 - - 18.50 17.50
Search system-4 15.25 15.25 - - 16.75 16.25
Search system-5 14.25 14.25 - - 15.75 15.25
Default MTI 7.50 6.25 8.75 6.00 7.50 6.75
MTI FirstLine g 15 9.25 11.50 11.50 9.50 8.75
Index

Table 7: Average system ranks across the batches of the Task 5a. A hyphenation symbol (-) is used when-
ever the system participated in fewer than 4 tests in the batch. Systems with fewer than 4 participations

in all batches are omitted.

the second best rank 2.0 and so on. In case two
or more systems tie, they all receive the average
rank. Table 7 presents the average rank (according
to MiF and LCA-F) of each system over all the test
sets for the corresponding batches. Note, that the
average ranks are calculated for the 4 best results
of each system in the batch according to the rules
of the challenge.

On both test batches and for both flat and hier-
archical measures, the DeepMeSH systems (Peng
et al., 2016) and the AUTH systems outperform
the strong baselines, indicating the importance of
the methodologies proposed, including d2v and
tf-idf transformations to generate feature embed-
dings, for semantic indexing. More detailed re-
sults can be found in the online results page >.

*http://participants-area.bioasq.org/
results/5a/
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4.2 Task 5b

Phase A: For phase A and for each of the four
types of annotations: documents, concepts, snip-
pets and RDF triples, we rank the systems accord-
ing to the Mean Average Precision (MAP) mea-
sure. The final ranking for each batch is calcu-
lated as the average of the individual rankings in
the different categories. In tables 8 and 9 some in-
dicative results from batch 3 are presented. Full
results are available in the online results page of
task 5b, phase A*.

It is worth noting that document and snippet re-
trieval for the given questions were the most pop-
ular part of the task. Moreover, for different evalu-
ation metrics, there are different systems perform-
ing best, indicating that different approaches to the
task may be preferable depending on the target

*nttp://participants-area.bioasq.org/
results/5b/phaseRn/



Mean

Mean

System . . Mean Recall MAP GMAP
Precision F-measure
testtext 0.1255 0.1789 0.1331 0.0931 0.0017
ustb-prirl 0.1306 0.1838 0.1372 0.0935 0.0016
ustb-prird 0.1323 0.2003 0.1412 0.1027 0.0016
ustb-prir3 0.1307 0.1846 0.1376 0.0982 0.0015
ustb-prir2 0.1270 0.1832 0.1340 0.0975 0.0013
fdu 0.1551 0.1401 0.1286 0.0650 0.0005
fdu2 0.1611 0.1296 0.1185 0.0653 0.0005
Olelo 0.0702 0.1135 0.0764 0.0386 0.0003
HPI-S1 0.0475 0.1032 0.0593 0.0367 0.0003
KNU-SG 0.0678 0.0980 0.0702 0.0465 0.0003
c-e-50 0.0493 0.0662 0.0488 0.0345 0.0001
c-50 0.0520 0.0772 0.0530 0.0360 0.0001
c-idf-ge-1 0.0414 0.0574 0.0427 0.0326 0.0001
c-f-200 0.0485 0.0685 0.0484 0.0299 0.0001
Table 8: Results for snippet retrieval in batch 3 of phase A of Task 5b.
System Me.a.n Mean Recall Mean MAP GMAP
Precision F-measure
ustb-prir4 0.1707 0.4787 0.2200 0.1143 0.0066
ustb-prirl 0.1680 0.4750 0.2155 0.1108 0.0060
fdu2 0.1645 0.4628 0.2135 0.0976 0.0059
ustb-prir2 0.1737 0.4754 0.2220 0.1134 0.0059
ustb-prir3 0.1620 0.4803 0.2111 0.1157 0.0050
fdu 0.1615 0.4475 0.2120 0.1021 0.0049
testtext 0.1610 0.4690 0.2087 0.1138 0.0048
fdu4d 0.1420 0.4310 0.1856 0.0926 0.0044
fdu3 0.1390 0.4098 0.1809 0.0976 0.0031
UNee ISyStem 0.2317 0.3340 0.2322 0.0825 0.0009
fdu5 0.1060 0.2461 0.1298 0.0737 0.0007
Olelo 0.1327 0.2444 0.1481 0.0658 0.0005
HPI-S1 0.0823 0.2152 0.0997 0.0464 0.0005
KNU-SG 0.0730 0.2149 0.0967 0.0521 0.0005
c-e-50 0.0720 0.1921 0.0861 0.0547 0.0003
c-50 0.0720 0.1921 0.0861 0.0547 0.0003
c-idf-qe-1 0.0720 0.1921 0.0861 0.0547 0.0003
c-f-200 0.0720 0.1921 0.0861 0.0547 0.0003

Table 9: Results for document retrieval in batch 3 of phase A of Task 5b.

outcome. For example, one can see that the UNCC
System I performed the best on some unordered
measures, namely mean precision and f-measure,
however using MAP or GMAP to consider the or-
der of retrieved elements, it is out preformed by
other systems, such as the ustb-prir. Additionally,
the combination of some of these approaches seem
like a promising direction for future research.

Phase B: In phase B of Task 5b the systems
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were asked to produce exact and ideal answers.
For ideal answers, the systems will eventually
be ranked according to manual evaluation by the
BioASQ experts (Balikas et al., 2013). Regard-
ing exact answers’, the systems were ranked ac-
cording to accuracy for the yes/no questions, mean
reciprocal rank (MRR) for the factoids and mean

SFor summary questions, no exact answers are required



System Yes/No Factoid List
Accuracy Strict Lenient MRR Precision Recall F-
Acc. Acc. measure
LabZhuFudan 5515 1818 03030 02298 03608 04231 03752
Univer
LabZhu,FDU 0.5517 02424 03636 02904 03608 04231  0.3752
LabZhu-FDU 0.5517 02727 03939 03207 03608 04231  0.3752
Deep QA 05517 03030 0.4545 03606 02833 03436  0.2927
(ensemble)

Deep QA (single)  0.5517 02424 03939 02965 02254 03564  0.2419
Oaqa-5b 0.6552  0.1515 0.1818  0.1667  0.1252  0.5353  0.1909
Oaqa 5b 0.6207  0.0909 0.1212  0.1061  0.1165 04615  0.1792

OaqaSb-tfidf 0.6207  0.0909 0.1212  0.1061  0.1165 04615  0.1792
LabZhu-FDU 05517  0.0909 0.1818  0.1313  0.1239 03077  0.1692
LabZhu Fdan 5515 (1212 02121 01591 01143 03077  0.1599
Univer
sarrouti 0.6207  0.0909 0.1212  0.0970  0.1077 02013  0.1369
Basic QA pipline  0.5517  0.0606  0.1818  0.1035  0.0769  0.1462  0.0967
SemanticRole 5510 60303 00606 00379 00846  0.1122  0.0943
Labeling
fal 0.5517  0.0909 0.1818  0.1187  0.0564 0.1333  0.0718
Olelo 0.5517  0.0000 0.0606  0.0253 00513 00513  0.0513
Olelo-GS 0.5172 - - - 0.0513  0.0513  0.0513
L2PS - Relations ~ 0.5172  0.0303  0.0303  0.0303  0.0371  0.1667  0.0504
L2PS-DeepQA 05172  0.0000  0.0303 00061 00207 02423  0.0338
L2PS 0.5172 ; ; - 0.0192  0.0513  0.0280
Simple system 0.5517 - - - - - -
fa2 0.5517  0.0303  0.0606  0.0404 ; ; -
fa3 0.5517  0.0303  0.0909  0.0465 - - -
Using NNR 0.5517 - - - - - -
Using regression 0.5517 - - - - - -
Trivial baseline 0.5517 - - - - - -
BioASQ-Baseline  0.4828  0.0303  0.1212  0.0682  0.1624 04276  0.2180

Table 10: Results for batch 4 for exact answers in phase B of Task 5b.

F-measure for the list questions. Table 10 shows
the results for exact answers for the fourth batch
of task 5b. The symbol (-) is used when systems
don’t provide exact answers for a particular type
of question. The full results of phase B of task 5b
are available online®.

From the results presented in Table 10, it can be
seen that systems achieve high scores in the yes/no
questions. This was especially in the first batches,
where a high imbalance in yes-no classes leaded to
trivial baseline solutions being very strong. This
was amended in the later batches, as shown in the
table for batch 4, where the best systems outper-

*http://participants-area.bioasq.org/
results/5b/phaseB/
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form baseline approaches.

On the other hand, the performance in factoid
and list questions indicates that there is more room
for improvement in these types of answer.

4.3 Task 5¢

Regarding the evaluation of Task 5c and taking
into account the fact that only a subset of grant IDs
and agencies mentioned in the full text were in-
cluded in the ground truth data sets, both for train-
ing and testing, micro-recall was the evaluation
measure used for all three sub-tasks. This means
that each system was assigned a micro-recall score
for grant IDs, agencies and full-grants indepen-
dently and the top-two contenders for each sub-



System Grant ID MR Grant Agency MR Full-Grant MR
Simple-ML2 0.9750 0.9900 0.9526
Simple-ML 0.9702 0.9907 0.9523
simpleSystem 0.9684 0.9890 0.9505
Simple-Regex2 0.9550 0.9847 0.9416
Gallen 0.9498 0.9862 0.9412
Hippocrates 0.9491 0.9859 0.9409
Simple-Regex 0.9530 0.9844 0.9397
Asclepius 0.9472 0.9859 0.9390
DZGl1 0.9232 0.9122 0.8443
DZG-agency 0.0000 0.8829 0.0000
DZG-grants 0.9235 0.0000 0.0000
BIOASQ Filtering 0.8167 0.8312 0.7174

Table 11: Micro Recall (MR) results on the test set of Task 5Sc.

task were selected as winners.

The results of the participating systems can be
seen in Table 11. Firstly, it can be seen that the
grant ID extraction task is harder compared to the
agency extraction. Moreover, the overall perfor-
mance of the participants was very good, and cer-
tainly better than the baseline system. This indi-
cates that the currently deployed techniques can
be improved and as discussed in section 3.3, this
can be done through the use of multiple method-
ologies. Finally, these results, despite being ob-
tained on a filtered subset of the data available,
could serve as a springboard to enhance and re-
deploy the currently implemented systems.

5 Conclusion

In this paper, an overview of the fifth BioASQ
challenge is presented. The challenge consisted of
three tasks: semantic indexing, question answer-
ing and funding information extraction. Overall,
as in previous years, the best systems were able
to outperform the strong baselines provided by the
organizers. This suggests that advances over the
state of the art were achieved through the BioASQ
challenge but also that the benchmark in itself is
challenging. Consequently, we believe that the
challenge is successfully towards pushing the re-
search frontier in on biomedical information sys-
tems.

In future editions of the challenge, we aim to
provide even more benchmark data derived from
a community-driven acquisition process and de-
sign a multi-batch scenario for Task 5c similar
to the other tasks. Finally, as a concluding re-
mark, it is worth mentioning that the increase
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in challenge participation this year’ highlights
the healthy growth of the BioASQ community,
gathering attention from different teams around
the globe and constituting a reference point for
biomedical semantic indexing and question an-
swering.
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Abstract

In this paper, we describe our participation
in phase B of task 5b of the fifth edition of
the annual BioASQ challenge, which in-
cludes answering factoid, list, yes-no and
summary questions from biomedical data.
We describe our techniques with an em-
phasis on ideal answer generation, where
the goal is to produce a relevant, pre-
cise, non-redundant, query-oriented sum-
mary from multiple relevant documents.
We make use of extractive summariza-
tion techniques to address this task and
experiment with different biomedical on-
tologies and various algorithms includ-
ing agglomerative clustering, Maximum
Marginal Relevance (MMR) and sentence
compression. We propose a novel word
embedding based tf-idf similarity metric
and a soft positional constraint which im-
prove our system performance. We eval-
uate our techniques on test batch 4 from
the fourth edition of the challenge. Our
best system achieves a ROUGE-2 score of
0.6534 and ROUGE-SU4 score of 0.6536.

1 Introduction

In recent years, there has been a huge surge
in the number of biomedical articles being de-
posited online. The National Library of Medicine
(NLM) provides MEDLINE, a gigantic database
of 23 million references to biomedical journal pa-
pers. Approximately 200,000 articles ! from this
database have been cited since 2015. The rapid
growth of information in this centralized repos-
itory makes it difficult for medical researchers
to manually find an exact answer for a question

'https://www.nlm.nih.gov/bsd/medline_
lang_distr.html
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or to summarize the enormous content to answer
a query. The problem of extracting exact an-
swers for factoid questions from this data is be-
ing studied extensively, resulting in the develop-
ment of several techniques including inferencing
(Moldovan et al., 2002), noisy-channel transfor-
mation (Echihabi and Marcu, 2003) and exploita-
tion of resources like WordNet (Lin and Hovy,
2003). However, recent times have also seen an in-
terest in developing ideal answer generation sys-
tems which can produce relevant, precise, non-
repetitive and readable summaries for biomedical
questions (Tsatsaronis et al., 2015). A query based
summarization system called “BioSQUASH” (Shi
et al., 2007) uses domain specific ontologies like
the Unified Medical Language System (UMLS)
(Schuyler et al., 1993) to create a conceptual
model for sentence ranking. Experiments with
biomedical ontology based concept expansion and
weighting techniques were conducted, where the
strength of the semantic relationships between
concepts was used as a similarity metric for sen-
tence ranking (Chen and Verma, 2006). Similar
methods (Yenala et al., 2015; Weissenborn et al.,
2013) are used for this task where the difference
lies in query similarity ranking methods.

This paper describes our efforts in creating a
system that can provide ideal answers for biomed-
ical questions. More specifically, we develop a
system which can answer the kinds of biomedical
questions present in the dataset for the BioASQ
challenge (Tsatsaronis et al., 2015), which is a
challenge on large-scale biomedical semantic in-
dexing and question answering. We participate
in Phase B of Task 5b (biomedical question-
answering) for the 2016 edition of this challenge
comprising of factoid, yes/no, list and summary
type questions. We develop a system for biomed-
ical summarization using MMR and clustering
based techniques. To answer factoid, list and

Proceedings of the BioNLP 2017 workshop, pages 58—66,
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yes/no questions, we use one of the winning sys-
tems (Yang et al., 2016) from the 2015 edition
of the BioASQ challenge, open-sourced after the
conclusion of the challenge .

We build on standard techniques such as Max-
imal Marginal Relevance (Carbonell and Gold-
stein, 1998) and Sentence Compression (Filip-
pova et al., 2015) and incorporate domain-specific
knowledge using biomedical ontologies such
as the UMLS metathesaurus and SNOMEDCT
(Stearns et al., 2001) to build an ideal answer gen-
erator for biomedical questions. We also experi-
ment with several similarity metrics such as jac-
card similarity and a novel word embedding based
tf-idf (w2v tf-idf) similarity metric within our sys-
tem. We evaluate the performance of our system
on the dataset for test batch 4 of the fourth edi-
tion of the challenge and report our system per-
formance on ROUGE-2 and ROUGE-SU4 (Lin
and Hovy, 2003), which are the standard metrics
used for official evaluation in the BioASQ chal-
lenge. Our best system achieves ROUGE-2 and
ROUGE-SU4 scores of 0.6534 and 0.6536 respec-
tively on test batch 4 for task 4b when evaluated on
BioASQ Oracle?. Various configurations and simi-
larity metrics, granularity and algorithms selection
enabled us to secure top 1,2,3 in test batch 4 and
top 1,2,3,4 in test batch 5 on automatic evaluation
metrics of ROUGE-2 and ROUGE-SU4, from our
participation in Task 5b of ideal answer genera-
tion.

The rest of the paper is organized as follows:
Section 2 describes the datasets used. In section
3, we describe our summarization pipeline, while
section 4 gives a brief overview of the system used
for factoid, list and yes-no questions. Section 5
presents the evaluation results of our summariza-
tion system and our observations about various
system configurations. Section 6 presents a com-
parative qualitative error analysis of some of our
system configurations. Section 7 concludes and
describes future work in this area.

2 Dataset

The training data for Phase B of task 5b pro-
vides biomedical questions, where each question
is associated with question type, urls of relevant
PubMed articles and relevant snippets from those
articles. This dataset consists of 1,799 questions.

https://github.com/oaga/biocasqg
3http://participants-area.bioasq.org/oracle/
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Though our ideal answer generation system is un-
supervised, we use a brief manual inspection of
the training data for this edition of the challenge
to make an informed choice of hyperparameters
for the algorithms used by our system.

To develop an ideal answer generator which can
produce query-oriented summaries for each ques-
tion, we can adopt one of two popular approaches:
extractive or abstractive. Extractive summariza-
tion techniques choose sentences from relevant
documents and combine them to form a summary.
Abstractive summarization methods use relevant
documents to create a semantic representation of
the knowledge from these documents and then
generate a summary using reasoning and natural
language generation techniques. Brief analysis on
a randomly sampled subset from the training data
shows us that most of the sentences in the gold
ideal answers are present either in the relevant
snippets or relevant abstracts of PubMed articles.
Hence we perform extractive summarization. We
also observe an interesting ordering trend among
relevant snippets which is used to develop a posi-
tional constraint. Adding this positional constraint
to our similarity metrics gives us a slight boost in
performance. We explain the intuition behind this
idea in more detail in section 3.1.2.

For evaluation, we use the dataset from test
batch 4 of the fourth edition of the BioASQ chal-
lenge which consists of 100 questions.

3 Summarization Pipeline

In this section, we describe our system pipeline
for the ideal answer generation task which mainly
comprises of three stages: question-sentence rel-
evance ranker, sentence selection and sentence
tiling. Each stage has multiple configurations de-
pending upon various choices for algorithms, con-
cept expansion and similarity metrics. Figure 1
shows the overall architecture of our system and
also briefly mentions various algorithms used in
each stage. We describe these stages and choices
in more detail in subsequent sections.

3.1 Question-Sentence Relevance ranker:

In this phase, we retrieve a list of candidate sen-
tences from gold abstracts and snippets provided
for each question and compute relevance scores
with respect to the question for these sentences.
We can choose from several similarity metrics,
biomedical ontologies and different granularities
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Figure 1: System pipeline for Ideal Answer Generation (with configuration choices)

for sentence scoring in this stage.

3.1.1 Granularity for Candidate Sentence
Extraction

The training data provided for the BioASQ task
contains a list of PubMed IDs of gold relevant
documents from NLM, along with gold relevant
snippets from these documents, for each question.
Since, the training data only contains PubMed IDs
of relevant documents, we extract complete ab-
stract text for these documents by first indexing all
Medline abstracts # via Lucene and then retrieving
relevant documents based on PubMed IDs.

We now have two choices of granularity for can-
didate sentence extraction: using entire abstract
texts from relevant documents or using only rel-
evant snippets. We experiment with both possi-
bilities. However, since relevant snippets for each
question are a subset of abstract texts, which are
highly relevant to the question, leveraging this in-
sight and using only snippets for candidate sen-
tence extraction gives us better performance, as we
see from the results in Section 5.

3.1.2 Similarity metrics

The performance of both, the relevance ranker and
the sentence selection phase (which is the follow-
ing phase in the pipeline), depends on the sim-
ilarity metrics used to capture question-sentence
relevance and sentence-sentence similarity. In

‘nttps://www.nlm.nih.gov/databases/
download/pubmed_medline.html

this section, we describe various similarity metrics
which we experiment with.

Jaccard similarity: For each sentence, its rele-
vance with respect to the question is computed as
the Jaccard index between the sets containing all
words occurring in the question and the sentence.
This is the simplest metric which captures surface
(word-level) similarity between the question and
the sentence. Including related concepts obtained
by concept expansion in these word sets provides
some measure of semantic overlap, but this tech-
nique is not very effective as we show in section
5.

Tf-idf based similarity with word embeddings:
Using ontologies such as WordNet (for general
English) and UMLS/ SNOMEDCT (for biomed-
ical domain) for concept expansion to incorporate
some semantics while computing sentence simi-
larity, is not sufficient due to the unbounded nature
of such ontologies. Hence, to assimilate semantic
information in a more controlled manner, we use
a novel similarity metric inspired by the widely-
used tf-idf cosine similarity metric which incorpo-
rates semantic information by making use of word
embeddings (Mikolov et al., 2013).

Let W represent the symmetric word-to-word
similarity matrix and @, b represent tf-idf vectors
for the sentences. The similarity metric is defined
as:

(1
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The word-to-word similarity matrix W is com-
puted using cosine similarity between word em-
beddings for each word. We use word embed-
dings which have been pre-trained on PubMed,
PMC and Wikipedia articles to incorporate do-
main knowledge .

Similarity function with positional constraints:
As described in section 2, the data provided for
each question contains a list of relevant abstracts
of PubMed articles, as well as a list of relevant
snippets extracted from these abstracts. The ab-
stracts are ordered by relevance. Snippets on the
other hand, are not ordered by relevance, but are
ordered according to the abstracts that they are ex-
tracted from. Since the abstracts themselves are
ordered by relevance, this gives an inherent dis-
course structure to the snippets. This observa-
tion motivates us to incorporate information about
a snippet’s position in the list into the similarity
function to improve the summaries generated by
our system. We first test this hypothesis using
a simple baseline which gives the first snippet in
the list as the summary for every question. This
simple baseline is able to achieve good ROUGE
scores as shown in Table 1. We experiment with
two different ways of incorporating this constraint:
» Hard positional constraint: In this method, we
enforce snippet position as a hard constraint. We
achieve this by restricting the algorithm to select
the first sentence of the summary from the first
snippet (most relevant snippet) in the list. Remain-
ing sentences can be selected from any snippet.
This method does not have much improvement on
our ROUGE scores as explained in section 5.

» Soft positional constraint: This method in-
corporates snippet position as a soft constraint
by adding it to the similarity function. The
augmented similarity function after incorporating
snippet position is presented below:

positional Sim(q, s) = a x sim(q, s)+ 2

(1 — ) * rank(s)
Here, ¢ and s denote the question and sentence
respectively; sim(q, s) denotes a function which
computes similarity between question and sen-
tence (we experiment with Jaccard and tf-idf
based similarities); rank(s) denotes the boost

>  These pre-trained word vectors are pro-
vided by  http://evexdb.org/pmresources/
vec—space—-models/
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given to the sentence based on the position of the
snippet to which it belongs and « is a weighting
parameter. The value of rank(s) for a sentence is
computed as follows:

rank(s) =1 — pos(s)
pos(s) = snippetPos(s)/#snippets

Here, snippet Pos(s) denotes the position (index)
of the snippet, to which the sentence belongs, in
the list of relevant snippets. If a sentence belongs
to multiple snippets, we consider the lowest index.
#snippets denotes the number of relevant snip-
pets for the current question. This positional boost
gives higher weight to sentences with lower posi-
tion values (since they occur earlier in the list) and
returns a normalized value in the range 0-1, to en-
sure that it is comparable to the range of values
produced by the similarity function. Adding this
constraint boosts our ROUGE scores.

3.1.3 Biomedical Tools and Ontologies

We experiment with various biomedical tools and
ontologies for concept expansion, in order to in-
corporate relations between concepts while com-
puting similarity. To perform concept expansion,
the first step is to identify biomedical concepts
from a sentence. We choose the MetaMap con-
cept identification tool and use a python wrapper,
pymetamap® for this purpose. This API identifies
biomedical concepts from a sentence and returns a
Concept Unique Identification (CUI) for each con-
cept. This CUI acts as a unique identifier for the
concept which is shared across ontologies, i.e it
can be used as an ID to retrieve the same concept
from the UMLS ontology. After biomedical con-
cepts are identified, we experiment with two on-
tologies for concept expansion: UMLS Metathe-
saurus and SNOMEDCT.

e UMLS Metathesaurus: The UMLS
Metathesarus contains many types of rela-
tions for each biomedical concept. For our
task, three relation types are of interest to us:
‘RB’ (broader relationship), ‘RL’ (similar
or alike relationship) and ‘RQ’ (related
and possibly synonymous relationship).
However, none of the biomedical concepts
identified from questions and sentences in

®https://github.com/AnthonyMRios/
pymetamap



our training dataset contained relations of
the type ‘RL’ or ‘RQ’. Hence we perform
expansion for each biomedical concept by
collecting all concepts linked to it by the
‘RB’ relation.

SNOMEDCT: The SNOMEDCT ontology
does not contain CUIs for biomedical con-
cepts. Hence, we need to use a different
technique to locate concepts in this ontol-
ogy. In addition to CUI, pymetamap also
provides a “preferred name” for each con-
cept. We use this preferred name to perform a
full-text search in the SNOMEDCT ontology.
All concepts returned by this search are then
considered to be related concepts and used
for expansion. Using this ontology for con-
cept expansion returns a much larger number
of related concepts, due to the nature of our
search (using fuzzy text search instead of pre-
cise identifiers).

We use these techniques to perform concept ex-
pansion on both questions and sentences from rel-
evant snippets. In Section 6, we present the results
of various system configurations with and without
domain specific concept expansion.

3.2 Sentence Selection

In this stage, we want to select sentences for the
final summary from candidate sentences extracted
by the previous stage. Since the BioASQ task
has a word limit of 200, we limit the number of
sentences selected for the final summary to five.
This sentence limit gives us good ROUGE scores
across multiple system configurations.

The simplest way of performing sentence selec-
tion is to continue selecting the sentence with the
highest relevance score with respect to the ques-
tion, till the sentence limit is reached. However,
sentences having high relevance with respect to
the question may be semantically similar, thus in-
troducing redundancy in the generated summary.
We use two algorithms to combat this issue: ag-
glomerative clustering based on sentence similar-
ity and Maximum Marginal Relevance (MMR)
(Carbonell and Goldstein, 1998). Both algorithms
require effective similarity metrics to compute se-
mantic similarity between sentences. We experi-
ment with various similarity metrics described in
section 3.1.2. We also experiment with concept
expansion using multiple biomedical ontologies.
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3.2.1 Agglomerative Clustering

Redundancy reduction via clustering is one of
the techniques that was proposed for biomedical
query-oriented summarization (Chen and Verma,
2006). In this technique, we create all possible
sentence pairs from our set of candidate sentences
and compute pair-wise similarities. We then per-
form agglomerative clustering on the sentences us-
ing these pair-wise similarity scores. Finally, we
select one sentence from each cluster to generate
the final summary, in such a way that the sentence
having maximum question relevance score is se-
lected from every cluster. The number of clus-
ters is set to the maximum number of sentences
we need in the final summary (five in this case).
The intuition behind this technique is that agglom-
erative clustering forces semantically similar sen-
tences to fall into the same cluster. Since we only
select one sentence from each cluster in the end,
we discard sentences which are highly similar to
the selected ones.

3.2.2 Maximal Marginal Relevance

Maximal Marginal Relevance (Carbonell and
Goldstein, 1998) is a widely-used summarization
algorithm which was proposed to tackle the issue
of redundancy while maintaining query relevance
in summarization. This algorithm selects new sen-
tences based on a combination of relevance score
with respect to the question as well as similarity
score with respect to the sentences which have al-
ready been selected for the final summary. Thus,
this algorithm incorporates sentence similarity as
a constraint, instead of explicitly clustering sen-
tences.

3.3 Sentence Tiling

In the final stage, we combine all selected sen-
tences to produce the final summary. The simplest
way is to append all selected sentences while con-
straining summary length (because of the word-
limit constraint for this task). We also experi-
ment with an LSTM-based sentence compression
method. We train a neural network based on a
work done previously (Filippova et al., 2015) for
sentence compression. We generate training data
for this network by pairing sentences from abstract
texts with their full text versions. Given that this
dataset is too small to train the neural network,
we add in training instances from existing sen-
tence compression data-sets. Input to this model
includes the word vector representation for a word



Experiment ROUGE-2 | ROUGE-SU4
1 | Clustering + Abstract texts (with average constraint) 0.2906 0.3138
2 | Clustering + Snippets (with average constraint) 0.4314 0.4347
3 | Clustering + Snippets (without average constraint) 0.5609 0.5632
4 | Clustering + UMLS expansion 0.5488 0.5521
5 | Clustering + SNOMEDCT expansion 0.5514 0.5586
6 | Clustering + UMLS expansion + weighting 0.5402 0.5431
7 | Clustering + SNOMEDCT expansion + weighting 0.5530 0.5588
8 | Clustering + UMLS expansion + weighted normalization 0.5592 0.5632
9 | Clustering + SNOMEDCT expansion + weighted normalization 0.5585 0.5650
10 | MMR 0.6338 0.6296
11 | MMR + w2y tf-idf similarity 0.6168 0.6126
12 | First snippet baseline 0.3363 0.3308
13 | MMR + Hard positional constraint + Jaccard similarity 0.6338 0.6296
14 | MMR + Soft positional constraint + Jaccard similarity 0.6419 0.6410
15 | Hard positional constraint + Jaccard similarity 0.6328 0.6254
16 | Soft positional constraint + Jaccard similarity 0.6433 0.6429
17 | Soft positional constraint + w2v tf-idf similarity 0.6534 0.6536
18 | MMR + tf-idf similarity + LSTM compression 0.5689 0.5723

Table 1: ROUGE scores with different algorithms, ontologies and similarity metrics

and a binary value to indicate whether the previous
word was included in the output sentence. Based
on these inputs, the output of the model predicts
whether the word should be deleted or not. Sen-
tences generated after word deletion are concate-
nated together to generate the final summary. It is
to be noted that this model does not require any
linguistic features.

4 Overview of system for exact answer
generation

To answer factoid, list and yes/no questions, we
use the publicly available system (Yang et al.,
2016), which builds on participation in 2015
(Yang et al., 2015). This system uses TmTool
in place of UTS (unlike (Yang et al., 2015)) for
concept identification as some of the constituent
parsers of TmTool identify concepts based on mor-
phological features instead of previously coded
ontologies. Also, the c-value method is used to
mine frequent multi-word concepts that might not
have been identified by tools such as TmTool,
MetaMap and LingPipe. The idea of reranking a
candidate answer based on its similarity to other
candidate answers is introduced in this system for
list type questions. The intuition behind this ap-
proach is that all answers to a list type question
should have the same semantic type and therefore,
it is useful to increase the score of a low-ranked
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candidate answer that has the same semantic type,
and vice-versa.

Yes/No questions are answered using the tech-
nique of question inversion. The last biomedical
concept present in the question is considered to be
the expected answer. The concept mentions and
tokens of the expected answer are removed from
the question, which is then converted to a factoid
type question. Candidate answers are generated
for this factoid question using the snippets for the
original question. The expected answer is then
compared to the ranked list of candidate answers
retrieved. The answer to the yes/no type question
will be yes if the expected answer is among the top
ranked candidate answers and no otherwise.

5 Evaluation and Discussion

We experiment with ideal answer generation using
various system configurations which differ in sim-
ilarity metrics, biomedical ontologies, sentence
selection algorithms(clustering/MMR) and tiling
algorithms used. The official evaluation for ideal
answers includes manual evaluation by biomedi-
cal experts in the BioASQ team as well as auto-
matic evaluation via ROUGE scores. To present
comparable and standardized results, we run our
system on the batch 4 dataset for Phase B of task
4b and get our results evaluated via the BioASQ
Oracle. These results are shown in Table 1. We



Category
Question

Gold Ideal
Answer

Clustering +
Snippets

Clustering +
UmMLS
expansion +
weighted
normalization

Clustering +
SNOMEDCT
expansion +
weighted
normalization

Question/Summary
What is the effect that EZH2 has on chromatin?

Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3), marks repressive to transcription.[1] The mammalian
homologs Ezh1 and Ezh2 form similar PRC2 complexes but exhibit contrasting repressive roles.[2] PRC2-Ezh2 catalyzes H3K27me2/3 and
its knockdown affects global H3K27me2/3 levels.[3] EZH2 thus maintains chromatin in a repressive state.

During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b
and INK4a Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired
resolution of experimental autoimmune encephalomyelitis We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes
but exhibit contrasting repressive roles.[2] In this study, we found the inverse correlation between FOXP3 and Ezh2, an enzyme for histone H3K27
trimethylation (H3K27me3) and a central epigenetic regulator in cancer the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter
and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter
in post-mitotic myotubes.

During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b
and INK4a. We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes but exhibit contrasting repressive roles.
[2] Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired resolution
of experimental autoimmune encephalomyelitis Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3) [3], marks
repressive to transcription.[1] the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK)
enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes.

During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of PRC binding and transcriptional activation of INK4b
and INK4a Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+) cells in non-lymphoid tissues and impaired
resolution of experimental autoimmune encephalomyelitis We report that the mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes
but exhibit contrasting repressive roles.[2] Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3), marks repressive
to transcription.[1] the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in
proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes.

maintenance of regulatory T cell identity after activation. Treg-specific ablation of Ezh2 resulted in spontaneous autoimmunity with reduced Foxp3(+)
cells in non-lymphoid tissues and impaired resolution of experimental autoimmune encephalomyelitis. the PRC2-Ezh2 complex, which is bound to the
myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces
PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes. In this study, we found the inverse correlation between FOXP3 and Ezh2, an enzyme for

Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.[1] In this study, we found the inverse correlation between FOXP3
and Ezh2, an enzyme for histone H3K27 trimethylation (H3K27me3) and a central epigenetic regulator in cancer. These studies reveal a critical role
for Ezh2 in the maintenance of Treg cell identity during cellular activation. We report that the mammalian homologs Ezh1 and Ezh2 form similar
PRC2 complexes but exhibit contrasting repressive roles.[2] The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T

Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.[1] We report that the mammalian homologs Ezh1 and Ezh2
form similar PRC2 complexes but exhibit contrasting repressive roles.[2] Ez that catalyzes di- and trimethylation of histone H3 lysine 27
(H3K37me2/3), marks repressive to transcription. During progenitor cell differentiation and ageing, PcG silencer EZH2 attenuates, causing loss of
PRC binding and transcriptional activation of INK4b and INK4a. the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and
muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in

and ezh2 maintain repressive chromatin through different mechanisms.[1] this study , found the inverse correlation between foxp3 and ezh2 , an

MMR Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms.[1] The chromatin-modifying enzyme Ezh2 is critical for the
histone H3K27 trimethylation (H3K27me3) and a central epigenetic regulator in cancer.
MMR + w2v
tf-idf
cell identity after activation.
Soft
constraint +
w2v tf-idf
post-mitotic myotubes.
MMR + w2v
tf-idf + LSTM enzyme for histone h3k27 trimethylation (h3k27me3) and a central epigenetic regulator in cancer . prc2-ezh2 complex , which is bound to the
sentence

compression

myogenin (myog) promoter and muscle creatine kinase (mck) enhancer in proliferating myoblasts , and the prc2-ezh1 complex , which replaces
prc2-ezh2 on myog promoter in post-mitotic myotubes .

Figure 2: Summaries generated with different techniques

obtain the best results among these configurations
by using soft positional constraint with tf-idf based
similarity on snippets.

The first three rows in Table 1 show our experi-
ments with different granularities for sentence ex-
traction. While using abstract texts for sentence
selection, we observe that our clustering technique
frequently puts sentences with low query rele-
vance into the same clusters. Since our selec-
tion method picks one sentence from each clus-
ter, some sentences with low query relevance from
these “bad” clusters are also selected for the final
summary. To solve this issue, we imposed a con-
straint which filtered out sentences having a lower-
than-average relevance score with respect to the
question before clustering. We also tried adding
this constraint while using relevant snippets, but
this reduced our scores, because sentences from
snippets are already relevant to the question and
we end up discarding important information by fil-

64

tering. We also observed that switching granular-
ity from abstract texts to relevant snippets signifi-
cantly boosted the ROUGE scores. Hence all sub-
sequent experiments (rows 4-18) use snippets for
sentence extraction.

Rows 4-9 show our experiments with concept
expansion using various biomedical ontologies
and weighting techniques. We use the following
weighting technique: while calculating similarity,
words from the original question and sentences
carry a weight of 1, while words obtained added
after concept expansion carry a weight of 0.5. We
do not observe significant gains using concept ex-
pansion. The unbounded nature of concept expan-
sion hurts our performance and so we refrain from
using this technique in further experiments. Row
10 shows our experiment using MMR for sentence
selection instead of clustering. MMR provides a
significant boost in ROUGE score. Row 11 shows
our experiment with the w2v tf-idf based similar-



ity metric instead of Jaccard similarity, which de-
creases our ROUGE scores slightly, but is still
better than previous system configurations. Row
12 shows the scores of a baseline system which
returns the first snippet from the list, which is
quite high, validating our assumption that snip-
pet position is an important factor. Rows 13-
17 shows our experiments with different ways
of adding positional constraints described in sec-
tion 3.1.2. While using a hard constraint does
not show much improvement, soft positional con-
straint gives a slight boost. Results with and with-
out MMR for this metric are nearly comparable.
Soft constraint gives a huge boost when used with
w2v tf-idf based similarity. Row 18 shows our ex-
periment adding LSTM-based compression on top
of MMR with w2v tf-idf based similarity, which
reduces our scores. Row 17 is the system con-
figuration with the highest ROUGE score on our
dataset, which uses soft positional constraint with
w2v tf-idf similarity.

6 Comparative Qualitative Error
Analysis

Figure 2 presents ideal answers generated by some
of our system configurations for a randomly se-
lected summary question from Task 4b Phase B
data to provide a comparative qualitative error
analysis. Each sentence in the ideal gold answer
is indexed with a number as shown in the figure.
We perform a relative analysis of the extent of in-
formation captured by a selected subset of system
configurations from Table 1.

The sentence indexed [1] in the gold ideal
answer is present word-for-word in summaries
created by two configurations: Clustering +
SNOMEDCT expansion + weighted normaliza-
tion and Soft constraint + w2v tf-idf. Clustering +
UMLS expansion + weighted normalization con-
tains a longer version of this sentence. We also
observe that this sentence does not contain any of
the terms from the original question. Hence, sum-
maries generated by all configurations using only
Jaccard similarity (Clustering + Snippets, MMR)
do not contain this sentence since there is no
surface-level similarity. However, methods which
incorporate some semantic information via word
embeddings (w2v tf-idf similarity) or concept ex-
pansion (UMLS/ SNOMEDCT) include this sen-
tence in the final summary, which shows that in-
corporating semantic information is important to
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bridge the vocabulary gap in some situations.

The sentence indexed [2] in the gold answer is
present in summaries generated by most of the
configurations as shown but with extra phrases
such as ‘We report that’ at the beginning of the
sentence. Though the presence of such words
does not have a major impact on automatic scores
like ROUGE, it influences the manual evaluation
which also judges summary readability. How-
ever, the LSTM-based compression method re-
moves these words via deletion. We observe that
this sentence contains the concept “Ezh2” which is
also present in the question. Hence, some configu-
rations which use surface-level similarity (Cluster-
ing+Snippets) also pick this sentence for the final
summary. But this sentence is not present in the
summary generated by the MMR + snippets con-
figuration. This happens because many sentences
selected by the algorithm already contain the con-
cept “Ezh2” and so this sentence is excluded due
to its similarity to already selected sentences.

7 Conclusion and Future Work

In this paper, we present a system for query-
oriented summary generation. Our comparison
of MMR and agglomerative clustering-based tech-
niques shows that while clustering selects distinct
sentences, it is unable to select sentences with
high query relevance. This can be improved by
learning hyperparameters like number of clusters
and number of sentences to be selected from each
cluster based on the type of question. We plan
to investigate this in the future. We find that
unbounded concept expansion hurts our system
scores. LSTM-based compression also hurts our
system scores and we need to investigate upon
this in the future to select the optimal parame-
ters for compression ratio in order to maximize
recall and precision. We also find that incorporat-
ing word embedding based tf-idf similarity along
with soft positional constraints outperforms sur-
face level word similarity with soft positional con-
straints. This is because the former captures both
semantic information of the content as well as rel-
evance to query based on sentence position.
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Abstract

Macquarie University’s contribution to the
BioASQ challenge (Task 5b Phase B) fo-
cused on the use of query-based extractive
summarisation techniques for the genera-
tion of the ideal answers. Four runs were
submitted, with approaches ranging from
a trivial system that selected the first n
snippets, to the use of deep learning ap-
proaches under a regression framework.
Our experiments and the ROUGE results
of the five test batches of BioASQ indi-
cate surprisingly good results for the triv-
ial approach. Overall, most of our runs on
the first three test batches achieved the best
ROUGE-SU4 results in the challenge.

1 Introduction

The main goal of query-focused multi-document
summarisation is to summarise a collection of
documents from the point of view of a particu-
lar query. In this paper we compare the use of
various techniques for query-focused summarisa-
tion within the context of the BioASQ challenge.
The BioASQ challenge (Tsatsaronis et al., 2015)
started in 2013 and it comprises various tasks cen-
tred on biomedical semantic indexing and ques-
tion answering. The fifth run of the BioASQ chal-
lenge (Nentidis et al., 2017), in particular, had
three tasks:

e BioASQ 5a: Large-scale online biomedical
semantic indexing.

e BioASQ 5b: Biomedical semantic question
answering. This task had two phases:

— Phase A: Identification of relevant infor-
mation.

— Phase B: Question answering.
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e BioASQ 5c: Funding information extraction
from biomedical literature.

The questions used in BioASQ 5b were of three
types: yes/no, factoid, list, and summary. Submis-
sions to the challenge needed to provide an exact
answer and an ideal answer. Figure 1 shows ex-
amples of exact and ideal answers for each type
of question. We can see that the ideal answers
are full sentences that expand the information pro-
vided by the exact answers. These ideal answers
could be seen as the result of query-focused multi-
document summarisation. We therefore focused
on Task 5b Phase B, and in that phase we did
not attempt to provide exact answers. Instead, our
runs provided the ideal answers only.

In this paper we will describe the techniques
and experiment results that were most relevant to
our final system runs. Some of our runs were
very simple, yet our preliminary experiments re-
vealed that they were very effective and, as ex-
pected, the simpler approaches were much faster
than the more complex approaches.

Each of the questions in the BioASQ test sets
contained the text of the question, the question
type, a list of source documents, and a list of rele-
vant snippets from the source documents. We used
this information, plus the source documents which
are PubMed abstracts accessible using the URL
provided in the test sets.

Overall, the summarisation process of our runs
consisted of the following two steps:

1. Split the input text (source documents or
snippets) into candidate sentences and score
each candidate sentence.

2. Return the n sentences with highest score.

The value of n was determined empirically and
it depended on the question type, as shown in Ta-
ble 1.

Proceedings of the BioNLP 2017 workshop, pages 6775,
Vancouver, Canada, August 4, 2017. (©2017 Association for Computational Linguistics



yes/no Does Apolipoprotein E (ApoE) have anti-inflammatory activity?

o Exact answer: yes
o Ideal answer: Yes. ApoE has anti-inflammatory activity

factoid Which type of lung cancer is afatinib used for?

e Exact answer: EGFR-mutant non small cell lung carcinoma

o Ideal answer: Afatinib is a small molecule covalently binding and inhibiting the EGFR, HER2
and HERA4 receptor tyrosine kinases. Trials showed promising efficacy in patients with EGFR-
mutant NSCLC or enriched for clinical benefit from EGFR tyrosine kinase inhibitors gefitinib
or erlotinib.

list Which are the Yamanaka factors?

e Exact answer: [OCT4, SOX2, MYC, KLF4]

o Ideal answer: The Yamanaka factors are the OCT4, SOX2, MYC, and KLF4 transcription
factors

summary What is the role of brain natriuretic peptide in traumatic brain injury patients ?

e Exact answer: N/A

o Ideal answer: Brain natriuretic peptide concentrations are elevated in patients with traumatic
brain during the acute phase and correlate with poor outcomes. In traumatic brain injury pa-
tients higher brain natriuretic peptide concentrations are associated with more extensive SAH,
elevated ICP and hyponatremia. Brain natriuretic peptide may play an adaptive role in recovery
through augmentation of cerebral blood flow.

Figure 1: Examples of questions with their exact and ideal answers in BioASQ 5b.
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Summary Factoid Yesno List

6 2 2 3

n

Table 1: Value of n (the number of sentences re-
turned as the ideal answer) for each question type.

2 Simple Runs

As a first baseline, we submitted a run labelled
trivial that simply returned the first n snippets of
each question. The reason for this choice was that,
in some of our initial experiments, we incorpo-
rated the position of the snippet as a feature for
a machine learning system. In those experiments,
the resulting system did not learn anything and
simply returned the input snippets verbatim. Sub-
sequent experiments revealed that a trivial base-
line that returned the first snippets of the question
was very hard to beat. In fact, for the task of
summarisation of other domains such as news, it
has been observed that a baseline that returns the
first sentences often outperformed other methods
(Brandow et al., 1995).

As a second baseline, we submitted a run la-
belled simple that selected the n snippets what
were most similar to the question. We used co-
sine similarity, and we tried two alternatives for
computing the question and snippet vectors:

tfidf-svd: First, generate the tf.idf vector of the
question and the snippets. We followed
the usual procedure, and the ¢f.idf vectors
of these sentences are bag-of-word vectors
where each dimension represents the ¢ f.idf
of a word. Then, reduce the dimensionality of
the vectors by selecting the first 200 compo-
nents after applying Singular Value Decom-
position. In contrast with a traditional ap-
proach to generate the ¢ f.idf (and SVD) vec-
tors where the statistics are based on the in-
put text solely (question and snippets in our
case), we used the text of the question and
the text of the ideal answers of the training
data.! The reason for using this variant was
based on empirical results during our prelim-
inary experiments.

word2vec: Train Word2Vec (Mikolov et al.,

In particular, we used the “TfidfVectorizer” module of
the sklearn toolkit (http://scikit—learn.org) and
fitted it with the list of questions and ideal answers. We then
used the “TruncatedSVD” module and fitted it with the tf.idf
vectors of the list of questions and ideal answers.
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trivial simple
tfidf-svd word2vec
Mean F1 0.2157  0.1643 0.1715
Stdev F1  0.0209  0.0097 0.0128

Table 2: ROUGE-SU4 of the simple runs.

2013) using a set of over 10 million PubMed
abstracts provided by the organisers of
BioASQ. Using these pre-trained word em-
beddings, look up the word embeddings of
each word in the question and the snippet.
The vector representing a question (or snip-
pet) is the sum of embeddings of each word
in the question (or snippet). The dimension
of the word embeddings was set to 200.

Table 2 shows the F1 values of ROUGE-SU4
of the resulting summaries. The table shows the
mean and the standard deviation of the evalua-
tion results after splitting the training data set for
BioASQ 5b into 10 folds (for comparison with the
approaches presented in the following sections).

We observe that the trivial run has the best re-
sults, and that the run that uses word2vec is second
best. Our run labelled “simple” therefore used co-
sine similarity of the sum of word embeddings re-
turned by word2vec.

3 Regression Approaches

For our run labelled regression, we experimented
with the use of Support Vector Regression (SVR).
The regression setup and features are based on the
work by Malakasiotis et al. (2015), who reported
the best results in BioASQ 3b (2015).

The target scores used to train the SVR system
were the F1 ROUGE-SU4 score of each individual
candidate sentence.

In contrast with the simple approaches de-
scribed in Section 2, which used the snippets as
the input data, this time we used all the sentences
of the source abstracts. We also incorporated in-
formation about whether the sentence was in fact
a snippet as described below.

As features, we used:

e tf.idf vector of the candidate sentence. In
contrast with the approach described in Sec-
tion 2, The statistics used to determine the
t f.idf vectors were based on the text of the
question, the text of the ideal answers, and
the text of the snippets.



Cosine similarity between the tf.idf vector
of the question and the tf.idf vector of the
candidate sentence.

The smallest cosine similarity between the
tf.idf vector of candidate sentence and the
tf.idf vector of each of the snippets related
to the question. Note that this feature was not
used by Malakasiotis et al. (2015).

Cosine similarity between the sum of
word2vec embeddings of the words in the
question and the word2vec embeddings of the
words in the candidate sentence. As in our
run labelled “simple”, we used vectors of di-
mension 200.

Pairwise cosine similarities between the
words of the question and the words of the
candidate sentence. As in the work by
Malakasiotis et al. (2015), we used word2vec
to compute the word vectors. These word
vectors were the same as used in Section 2.
We then computed the pairwise cosine simi-
larities and selected the following features:

— The mean, median, maximum, and min-
imum of all pairwise cosine similarities.

— The mean of the 2 highest, mean of the 3
highest, mean of the 2 lowest, and mean
of the 3 lowest.

Weighted pairwise cosine similarities, also
based in the work by Malakasiotis et al.
(2015). In particular, now each word vec-
tor was multiplied by the ¢ f.idf of the word,
we computed the pairwise cosine similarities,
and we used the mean, median, maximum,
minimum, mean of 2 highest, mean of 3 high-
est, mean of 2 lowest, and mean of 3 lowest.

Figure 2 shows the result of grid search by vary-
ing the gamma parameter of SVR, fixing C' to
1.0, and using the RBF kernel.? The figure shows
the result of an extrinsic evaluation that reports the
F1 ROUGE-SU4 of the final summary, and the re-
sult of an intrinsic evaluation that reports the Mean
Square Error (MSE) between the target and the
predicted SU4 of each individual candidate sen-
tence.

We can observe discrepancy between the results
of the intrinsic and the extrinsic evaluations. This

>We used the Scikit-learn Python package.
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MSE

01 0001 00001

Figure 2: Grid search of the Gamma parameter
for the experiments using Support Vector Regres-
sion. The continuous lines indicate the mean of
10-fold cross-validation over the training data set
of BioASQ 5b. The dashed lines indicate 2 X the
standard deviation.

discrepancy could be due to the fact that the data
are highly imbalanced in the sense that most anno-
tated SU4 scores in the training data have low val-
ues. Consequently, the regressor would attempt to
minimise the errors in the low values of the train-
ing data at the expense of errors in the high values.
But the few sentences with high SU4 scores are
most important for the final summary, and these
have higher prediction error. This can be observed
in the scatter plot of Figure 3, which plots the tar-
get against the predicted SU4 in the SVR experi-
ments for each value of gamma. The SVR system
has learnt to predict the low SU4 scores to some
degree, but it does not appear to have learnt to dis-
criminate among SU4 scores over a value of 0.4.

Our run labelled “regression” used gamma =
0.1 since it gave the best MSE in our intrinsic eval-
uation, and Figure 3 appeared to indicate that the
system learnt best.

4 Deep Learning Approaches

For our run labelled nnr we experimented with the
use of deep learning approaches to predict the can-
didate sentence scores under a regression setup.
The regression setup is the same as in Section 3.
Figure 4 shows the general architecture of the
deep learning systems explored in our experi-
ments. In a pre-processing stage, and not shown in
the figure, the main text of the source PubMed ab-
stracts is split into sentences by using the default
NLTK? sentence segmenter. The candidate sen-

Shttp://www.nltk.org
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tences and questions undergo a simple preprocess-
ing stage that removes punctuation characters, and
lowercases the string and splits on blank spaces.
Then, these are fed to the system as a sequence of
token identifiers. Figure 4 shows that the input to
the system is a candidate sentence and the question
(as sequences of token IDs). The input is first con-
verted to sequences of word embeddings by apply-
ing an embedding matrix. The word embedding
stage is followed by a sentence and question re-
duction stage that combines the word embeddings
of each sentence into a sentence embedding. Then,
the sentence embedding and the question embed-
ding are compared by applying a similarity opera-
tion, and the vector resulting from the comparison
is concatenated to the sentence embedding for a fi-
nal regression comprising of a hidden layer of rec-
tilinear units (relu) and a final linear combination.

The weights of all stages are optimised by back-
propagation in order to minimise the MSE of the
predicted score at training time. Our experiments
varied on the approach for sentence and ques-
tion reduction, and the approach to incorporate the
similarity between sentence and question, as de-
scribed below.

To produce word embeddings we use word2vec,
trained on a collection of over 10 million PubMed
abstracts as described in previous sections. The
resulting word embeddings are encoded in the em-
bedding matrix of Figure 4. We experimented with
the possibility of adjusting the weights of the em-
bedding matrix by backpropagation, but the results
did not improve. The results reported in this paper,
therefore, used a constant embedding matrix. We
experimented with various sizes of word embed-
dings and chose 100 for the experiments in this
paper.

After obtaining the word embeddings, we ex-
perimented with the following approaches to pro-
duce the sentence vectors:

Mean: The word embeddings provided by
word2vec map words into a dimensional
space that roughly represents the word
meanings, such that words that are similar
in meaning are also near in the embedded
space. This embedding space has the prop-
erty that some semantic relations between
words are also mapped in the embedded
space (Mikolov et al., 2013). It is therefore
natural to apply vector arithmetics such as
the sum or the mean of word embeddings
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of a sentence in order to obtain the sentence
embedding. In fact, this approach has been
used in a range of applications, on its own,
or as a baseline against which to compare
other more sophisticated approaches to
obtain word embeddings, e.g. work by Yu
et al. (2014) and Kageback et al. (2014). To
accommodate for different sentence lengths,
in our experiments we use the mean of word
embeddings instead of the sum.

CNN: Convolutional Neural Nets (CNN) were
originally developed for image processing,
for tasks where the important information
may appear on arbitrary fragments of the im-
age (Fukushima, 1980). By applying a con-
volutional layer, the image is scanned for
salient information. When the convolutional
layer is followed by a maxpool layer, the
most salient information is kept for further
processing.

We follow the usual approach for the applica-
tion of CNN for word sequences, e.g. as de-
scribed by Kim (2014). In particular, the em-
beddings of the words in a sentence (or ques-
tion) are arranged in a matrix where each row
represents a word embedding. Then, a set of
convolutional filters are applied. Each con-
volutional filter uses a window of width the
total number of columns (that is, the entire
word embedding). Each convolutional filter
has a fixed height, ranging from 2 to 4 rows
in our experiments. These filters aim to cap-
ture salient ngrams. The convolutional filters
are then followed by a maxpool layer.

Our final sentence embedding concatenates
the output of 32 different convolutional fil-
ters, each at filter heights 2, 3, and 4. The
sentence embedding, therefore, has a size of
32 x 3 = 96.

LSTM: The third approach that we have used
to obtain the sentence embeddings is recur-
rent networks, and in particular Long Short
Term Memory (LSTM). LSTM has been ap-
plied successfully to applications that pro-
cess sequences of samples (Hochreiter et al.,
1997). Our experiments use TensorFlow’s
implementation of LSTM cells as described
by Pham et al. (2013).

In order to incorporate the context on the left



and right of each word we have used the bidi-
rectional variant that concatenates the output
of a forward and a backward LSTM chain.
As is usual practice, all the LSTM cells in the
forward chain share a set of weights, and all
the LSTM cells in the backward chain share
a different set of weights. This way the net-
work can generalise to an arbitrary position
of a word in the sentence. However, we ex-
pect that the words of the question behave
differently from the words of the candidate
sentence. He have therefore used four dis-
tinct sets of weights, two for the forward and
backward chains of the candidate sentences,
and two for the question sentences.

In our experiments, the size of the output of a
chain of LSTM cells is the same as the num-
ber of features in the input data, that is, the
size of the word embeddings. Accounting
for forward and backward chains, and given
word embeddings of size 100, the size of the
final sentence embedding is 200.

Figure 4 shows how we incorporated the simi-
larity between the question and the candidate sen-
tence. In particular, we calculated a weighted dot
product, where the weights w; can be learnt by
backpropagation:

sim(q, s) = > wig;s;
5

Since the sum will be performed by the subse-
quent relu layer, our comparison between the sen-
tence and the question is implemented as a simple
element-wise product between the weights, sen-
tence embeddings, and question embeddings.

An alternative similarity metric that we have
also tried is as proposed by Yu et al. (2014). Their
similarity metric allows for interactions between
different components of the sentence vectors, by
applying a d x d weight matrix W, where d is the
sentence embedding size, and adding a bias term:

simYu(q,s) =q' Ws+b

In both cases, the optimal weights and bias are
learnt by backpropagation as part of the complete
neural network model of the system.

Table 3 shows the average MSE of 10-
fold cross-validation over the training data of
BioASQ 5b. “Tf.idf” is a neural network with
a hidden layer of 50 relu cells, followed by a
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Method Plain Sim SimYu
Tf.idf 0.00354

SVD 0.00345 0.00334 0.00342
Mean 0.00341 0.00330 0.00331
CNN 0.00350 0.00348 0.00349
LSTM  0.00344 0.00335 0.00336

Table 3: Average MSE of 10-fold cross-validation.

linear cell, where the inputs are the #f.idf of the
words. “SVD” computes the sentence vectors as
described in Section 2, with the only difference
being that now we chose 100 SVD components
(instead of 200) for comparison with the other ap-
proaches shown in Table 3.

We observe that all experiments perform better
than the Tf.idf baseline, but there are no major dif-
ferences between the use of SVD and the three ap-
proaches based on word embeddings. The systems
which integrated a sentence similarity performed
better than those not using it, though the differ-
ences when using CNN are negligible. Each cell
in Table 3 shows the best results after grid searches
varying the dropout rate and the number of epochs
during training.

For the “nnr” run, we chose the combination
“Mean” and “Sim” of Table 3, since they pro-
duced the best results in our experiments (although
only marginally better than some of the other ap-
proaches shown in the table).

5 Submission Results

At the time of writing, the human evaluations had
not been released, and only the ROUGE results of
all 5 batches were available. Table 4 shows the F1
score of ROUGE-SU4.

Figure 5 shows the same information as a plot
that includes our runs and all runs of other partic-
ipating systems with higher ROUGE scores. The
figure shows that, in the first three batches, only
one run by another participant was among our
results (shown as a dashed line in the figure).
Batches 4 and 5 show consistent results by our
runs, and improved results of runs of other en-
trants.

The results are consistent with our experiments,
though the absolute values are higher than those
in our experiments. This is probably because we
used the entire training set of BioASQ 5b for our
cross-validation results, and this data is the aggre-



System Batch1 Batch2 Batch3 Batch4 BatchS
trivial 0.5498 0.4901 0.5832  0.5431  0.4950
simple 0.5068  0.5182  0.6186 0.5769  0.5840
regression 0.5186 04795 0.5785 0.5436 0.4784
nnr 04192 03920 0.5196  0.4445  0.4000

Table 4: ROUGE-SU4 of the 5 batches of BioASQ 2017.
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e
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- - lother)
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1 2
Batch
Figure 5: Top ROUGE-SU4 scores of the 5
batches of BioASQ 2017.

gation of the training sets of the BioASQ tasks of
previous years. It is possible that the data of latter
years are of higher quality, and it might be useful
to devise learning approaches that would account
for this possibility.

6 Conclusions

At the time of writing, only the ROUGE scores
of BioASQ 5b were available. The conclusions
presented here, therefore, do not incorporate any
insights of the human judgements that are also part
of the final evaluation of BioASQ.

Our experiments show that a trivial baseline
system that returned the first n snippets appears
to be hard to beat. This implies that the order of
the snippets matters. Even though the judges were
not given specific instructions about the order of
the snippets, it would be interesting to study what
criteria they used to present the snippets.

Our runs using regression were not significantly
better than simpler approaches, and the runs using
deep learning reported the lowest results. Note,
however, that the input features used in the runs
using deep learning did not incorporate informa-
tion about the snippets. Table 3 shows that the re-
sults using deep learning are comparable to results
using tf.idf and using SVD, so it is possible that
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an extension of the system that incorporates infor-
mation from the snippets would equal or better the
other systems.

Note that none of the experiments described in
this paper used information specific to the biomed-
ical domain and therefore the methods described
here could be applied to any other domain.

Acknowledgments

Some of the experiments in this research were
carried out in cloud machines under a Microsoft
Azure for Research Award.

References

Ronald Brandow, Karl Mitze, and Lisa F. Rau. 1995.
Automatic condensation of electronic publications
by sentence selection. Information Processing and

Management 31(5):675-685.

Kunihiko Fukushima. 1980. Neocognitron: A self-
organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position.
Biological Cybernetics 36(4):193-202.

Sepp Hochreiter, Jiirgen Schmidhuber, Sepp Hochre-
iter, Jiirgen Schmidhuber, and Jiirgen Schmidhuber.
1997. Long short-term memory. Neural Computa-
tion 9(8):1735-80.

Mikael Kageback, Olof Mogren, Nina Tahmasebi, and
Devdatt Dubhashi. 2014. Extractive summariza-
tion using continuous vector space models. In Pro-
ceedings of the 2nd Workshop on Continuous Vector
Space Models and their Compositionality (CVSC).
pages 31-39.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2014) pages 1746-1751.

Prodromos Malakasiotis, Emmanouil Archontakis, and
Ion Androutsopoulos. 2015. Biomedical question-
focused multi-document summarization: ILSP and
AUEB at BioASQ3. In CLEF 2015 Working Notes.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop
at ICLR. pages 1-12.



Anastasios Nentidis, Konstantinos Bougiatiotis, Anas-
tasia Krithara, Georgios Paliouras, and loannis
Kakadiaris. 2017. Results of the fifth edition of the
BioASQ Challenge. In Proceedings BioNLP 2017.

Vu Pham, Théodore Bluche, Christopher Kermorvant,
and Jérome Louradour. 2013. Dropout improves re-
current neural networks for handwriting recognition.
Technical report.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, Yannis Almirantis, John Pavlopoulos, Nico-
las Baskiotis, Patrick Gallinari, Thierry Artiéres,
Axel-Cyrille Ngonga Ngomo, Norman Heino, Eric
Gaussier, Liliana Barrio-Alvers, Michael Schroeder,
Ion Androutsopoulos, and Georgios Paliouras. 2015.
An overview of the BIOASQ large-scale biomedical
semantic indexing and question answering competi-
tion. BMC Bioinformatics 16(1):138.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep learning for answer
sentence selection. In NIPS Deep Learning Work-
shop. page 9.

75



Neural Question Answering at BioASQ 5B

Georg Wiese!?, Dirk Weissenborn? and Mariana Neves!
! Hasso Plattner Institute, August Bebel Strasse 88, Potsdam 14482 Germany
2 Language Technology Lab, DFKI, Alt-Moabit 91c, Berlin, Germany
georg.wiese@student.hpi.de,

dewe(01l@dfki.de,

Abstract

This paper describes our submission to the
2017 BioASQ challenge. We participated
in Task B, Phase B which is concerned
with biomedical question answering (QA).
We focus on factoid and list question, us-
ing an extractive QA model, that is, we
restrict our system to output substrings of
the provided text snippets. At the core
of our system, we use FastQA, a state-of-
the-art neural QA system. We extended
it with biomedical word embeddings and
changed its answer layer to be able to
answer list questions in addition to fac-
toid questions. We pre-trained the model
on a large-scale open-domain QA dataset,
SQuAD, and then fine-tuned the parame-
ters on the BioASQ training set. With our
approach, we achieve state-of-the-art re-
sults on factoid questions and competitive
results on list questions.

1 Introduction

BioASQ is a semantic indexing, question answer-
ing (QA) and information extraction challenge
(Tsatsaronis et al., 2015). We participated in
Task B of the challenge which is concerned with
biomedical QA. More specifically, our system par-
ticipated in Task B, Phase B: Given a question
and gold-standard snippets (i.e., pieces of text that
contain the answer(s) to the question), the system
is asked to return a list of answer candidates.

The fifth BioASQ challenge is taking place at
the time of writing. Five batches of 100 questions
each were released every two weeks. Participating
systems have 24 hours to submit their results. At
the time of writing, all batches had been released.

The questions are categorized into different
question types: factoid, list, summary and yes/no.
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Our work concentrates on answering factoid and
list questions. For factoid questions, the system’s
responses are interpreted as a ranked list of an-
swer candidates. They are evaluated using mean-
reciprocal rank (MRR). For list questions, the sys-
tem’s responses are interpreted as a set of answers
to the list question. Precision and recall are com-
puted by comparing the given answers to the gold-
standard answers. F1 score, i.e., the harmonic
mean of precision and recall, is used as the offi-
cial evaluation measure '.

Most existing biomedical QA systems employ
a traditional QA pipeline, similar in structure to
the baseline system by Weissenborn et al. (2013).
They consist of several discrete steps, e.g., named-
entity recognition, question classification, and
candidate answer scoring. These systems require a
large amount of resources and feature engineering
that is specific to the biomedical domain. For ex-
ample, OAQA (Zi et al., 2016), which has been
very successful in last year’s challenge, uses a
biomedical parser, entity tagger and a thesaurus to
retrieve synonyms.

Our system, on the other hand, is based on a
neural network QA architecture that is trained end-
to-end on the target task. We build upon FastQA
(Weissenborn et al., 2017), an extractive factoid
QA system which achieves state-of-the-art results
on QA benchmarks that provide large amounts of
training data. For example, SQuAD (Rajpurkar
et al.,, 2016) provides a dataset of ~ 100,000
questions on Wikipedia articles. Our approach
is to train FastQA (with some extensions) on the
SQuAD dataset and then fine-tune the model pa-
rameters on the BioASQ training set.

Note that by using an extractive QA network as
our central component, we restrict our system’s

'The details of the evaluation can be found at
http://participants-area.bioasqg.org/
Tasks/b/eval_meas/
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Figure 1: Neural architecture of our system. Ques-
tion and context (i.e., the snippets) are mapped di-
rectly to start and end probabilities for each con-
text token. We use FastQA (Weissenborn et al.,
2017) with modified input vectors and an output
layer that supports list answers in addition to fac-
toid answers.

responses to substrings in the provided snippets.
This also implies that the network will not be able
to answer yes/no questions. We do, however, gen-
eralize the FastQA output layer in order to be able
to answer list questions in addition to factoid ques-
tions.

2 Model

Our system is a neural network which takes as in-
put a question and a context (i.e., the snippets) and
outputs start and end pointers to tokens in the con-
text. At its core, we use FastQA (Weissenborn
et al., 2017), a state-of-the-art neural QA system.
In the following, we describe our changes to the
architecture and how the network is trained.

2.1 Network architecture

In the input layer, the context and question to-
kens are mapped to high-dimensional word vec-
tors. Our word vectors consists of three compo-
nents, which are concatenated to form a single
vector:

e GloVe embedding: We use 300-dimensional
GloVe embeddings 2> (Pennington et al.,

>We use the 840B embeddings available here: https:
//nlp.stanford.edu/projects/glove/
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2014) which have been trained on a large col-
lection of web documents.

Character embedding: This embedding is
computed by a 1-dimensional convolutional
neural network from the characters of the
words, as introduced by Seo et al. (2016).

Biomedical Word2Vec embeddings: We
use the biomedical word embeddings pro-
vided by Pavlopoulos et al. (2014). These
are 200-dimensional Word2Vec embeddings
(Mikolov et al., 2013) which were trained on
~ 10 million PubMed abstracts.

To the embedding vectors, we concatenate a
one-hot encoding of the question type (list or fac-
toid). Note that these features are identical for all
tokens.

Following our embedding layer, we invoke
FastQA in order to compute start and end scores
for all context tokens. Because end scores are con-
ditioned on the chosen start, there are O(n?) end
scores where n is the number of context tokens.
We denote the start index by ¢ € [1,n], the end
index by j € [i,n], the start scores by v%,,,;» and
end scores by y;fl d

In our output layer, the start, end, and span prob-
abilities are computed as:

pétart = U(y;tart) (])
Pena = s0ftmaz(y;,q) (2)
plsgan = pétart : pzeﬁld (3)

where o denotes the sigmoid function. By com-
puting the start probability via the sigmoid rather
than softmax function (as used in FastQA), we en-
able the model to output multiple spans as likely
answer spans. This generalizes the factoid QA net-
work to list questions.

2.2 Training & decoding

Loss We define our loss as the cross-entropy of
the correct start and end indices. In the case of
multiple occurrences of the same answer, we only
minimize the span of the lowest loss.



Factoid MRR List F1

Batch Single Ensemble Single Ensemble

1 52.0% (2/10)  57.1% (1/10)  33.6% (1/11) 33.5%(2/11)
2 38.3% (3/15)  42.6% (2/15) 29.0% (8/15) 26.2%(9/15)
3 43.1% (1/16)  42.1% (2/16)  41.5% (2/17)  49.5%(1/17)
4 30.0% (3/20)  36.1% (1/20) 24.2% (5/20) 29.3%(4/20)
5 39.2% (3/17)  35.1% (4/17)  36.1% (4/20)  39.1%(2/20)
Average 40.5% 42.6% 32.9% 35.1%

Table 1:

Preliminary results for factoid and list questions for all five batches and for our single and

ensemble systems. We report MRR and F1 scores for factoid and list questions, respectively. In paren-
theses, we report the rank of the respective systems relative to all other systems in the challenge. The
last row averages the performance numbers of the respective system and question type across the five

batches.

Optimization We train the network in two steps:
First, the network is trained on SQuAD, following
the procedure by Weissenborn et al. (2017) (pre-
training phase). Second, we fine-tune the network
parameters on BioASQ (fine-tuning phase). For
both phases, we use the Adam optimizer (Kingma
and Ba, 2014) with an exponentially decaying
learning rate. We start with learning rates of
1073 and 10~ for the pre-training and fine-tuning
phases, respectively.

BioASQ dataset preparation During fine-
tuning, we extract answer spans from the BioASQ
training data by looking for occurrences of the
gold standard answer in the provided snippets.
Note that this approach is not perfect as it can pro-
duce false positives (e.g., the answer is mentioned
in a sentence which does not answer the question)
and false negatives (e.g., a sentence answers the
question, but the exact string used is not in the syn-
onym list).

Because BioASQ usually contains multiple

snippets for a given question, we process all snip-
pets independently and then aggregate the answer
spans, sorting globally according to their probabil-
ity pian-
Decoding During the inference phase, we re-
trieve the top 20 answers span via beam search
with beam size 20. From this sorted list of an-
swer strings, we remove all duplicate strings. For
factoid questions, we output the top five answer
strings as our ranked list of answer candidates. For
list questions, we use a probability cutoff threshold
t, such that { (i, ) |p4J,, > t} is the set of answers.
We set t to be the threshold for which the list F1
score on the development set is optimized.
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Ensemble In order to further tweak the perfor-
mance of our systems, we built a model ensemble.
For this, we trained five single models using 5-fold
cross-validation on the entire training set. These
models are combined by averaging their start and
end scores before computing the span probabili-
ties (Equations 1-3). As a result, we submit two
systems to the challenge: The best single model
(according to its development set) and the model
ensemble.

Implementation We implemented our system
using TensorFlow (Abadi et al., 2016). It was
trained on an NVidia GForce Titan X GPU.

3 Results & discussion

We report the results for all five test batches of
BioASQ 5 (Task 5b, Phase B) in Table 1. Note
that the performance numbers are not final, as the
provided synonyms in the gold-standard answers
will be updated as a manual step, in order to reflect
valid responses by the participating systems. This
has not been done by the time of writing®. Note
also that — in contrast to previous BioASQ chal-
lenges — systems are no longer allowed to provide
an own list of synonyms in this year’s challenge.

In general, the single and ensemble system are
performing very similar relative to the rest of field:
Their ranks are almost always right next to each
other. Between the two, the ensemble model per-
formed slightly better on average.

On factoid questions, our system has been very

successful, winning three out of five batches. On

*The final results will be published at http:
//participants—-area.biocasqg.org/results/
5b/phaseB/



list questions, however, the relative performance
varies significantly. We expect our system to per-
form better on factoid questions than list ques-
tions, because our pre-training dataset (SQuAD)
does not contain any list questions.

Starting with batch 3, we also submitted re-
sponses to yes/no questions by always answering
yves. Because of a very skewed class distribution
in the BioASQ dataset, this is a strong baseline.
Because this is done merely to have baseline per-
formance for this question type and because of the
naivety of the method, we do not list or discuss the
results here.

4 Conclusion

In this paper, we summarized the system design
of our BioASQ 5B submission for factoid and list
questions. We use a neural architecture which is
trained end-to-end on the QA task. This approach
has not been applied to BioASQ questions in pre-
vious challenges. Our results show that our ap-
proach achieves state-of-the art results on factoid
questions and competitive results on list questions.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on

heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111-3119.

Ioannis  Pavlopoulos,

Ion Androutsopoulos.

Aris Kosmopoulos, and
2014. Continuous
space word vectors obtained by applying
word2vec to abstracts of biomedical articles
http://bioasq.lip6.fr/info/BioASQword2vec/.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532—
1543. http://www.aclweb.org/anthology/D14-1162.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250 .

79

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention

flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. 2015. An overview of the bioasq large-
scale biomedical semantic indexing and question an-
swering competition. BMC bioinformatics 16(1):1.

Dirk Weissenborn, George Tsatsaronis, and Michael
Schroeder. 2013. Answering factoid questions in the
biomedical domain. BioASQ@ CLEF 1094.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017. Making neural ga as simple as possible but
not simpler. arXiv preprint arXiv:1703.04816 .

Yang Zi, Zhou Yue, and Eric Nyberg. 2016. Learning
to answer biomedical questions: Oaqa at bioasq 4b.
ACL 2016 page 23.



End-to-End System for Bacteria Habitat Extraction

Farrokh Mehryary'?*, Kai Hakala'**, Suwisa Kaewphan'*3*,
Jari Bjorne!, Tapio Salakoski'” and Filip Ginter!
1. Turku NLP Group, Department of FT, University of Turku, Finland
2. The University of Turku Graduate School (UTUGS), University of Turku, Finland
3. Turku Centre for Computer Science (TUCS), Finland
firstname.lastname@utu.fi

Abstract

We introduce an end-to-end system capa-
ble of named-entity detection, normaliza-
tion and relation extraction for extracting
information about bacteria and their habi-
tats from biomedical literature. Our sys-
tem is based on deep learning, CRF clas-
sifiers and vector space models. We train
and evaluate the system on the BioNLP
2016 Shared Task Bacteria Biotope data.
The official evaluation shows that the joint
performance of our entity detection and re-
lation extraction models outperforms the
winning team of the Shared Task by 19pp
on F-score, establishing a new top score
for the task. We also achieve state-of-
the-art results in the normalization task.
Our system is open source and freely
available at https://github.com/
TurkuNLP/BHE.

1 Introduction

Knowledge about habitats of bacteria is crucial for
the study of microbial communities, e.g. metage-
nomics, as well as for various applications such
as food processing and health sciences. Although
this type of information is available in the biomed-
ical literature, comprehensive resources accumu-
lating the knowledge do not exist (Deléger et al.,
2016).

The BioNLP Bacteria Biotope (BB) Shared
Tasks are organized to provide a common evalua-
tion platform for language technology researchers
interested in developing information extraction
methods adapted for the detection of bacteria and
their physical locations mentioned in the literature.
So far three BB shared tasks have been organized,
the latest in 2016 (BB3) consisting of three main

*These authors contributed equally.
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subtasks: named entity recognition and catego-
rization (BB3-cat and BB3-cat+ner), event extrac-
tion (BB3-event and BB3-event+ner) and knowl-
edge base extraction. The NER task includes three
relevant entity types: HABITAT, BACTERIA and
GEOGRAPHICAL, the categorization task focuses
on normalizing the mentions to established ontol-
ogy concepts, although GEOGRAPHICAL entities
are excluded from this task, whereas the event ex-
traction aims at finding the relations between these
entities, i.e. extracting in which locations certain
bacteria live in. The knowledge base extraction
task is centered upon aggregating this type of in-
formation from a large text corpus.

In this paper we revisit the BB3 subtasks of
NER, categorization and event extraction, all of
which are essential for building a real-world infor-
mation extraction pipeline. As a result, we present
a text mining pipeline which achieves state-of-the-
art results for the joint evaluation of NER and
event extraction as well as for the categorization
task using the official BB3 shared task datasets and
evaluation tools. Building such end-to-end sys-
tem is important for bringing the results from the
shared tasks to the actual intended users. To our
best knowledge, no such system is openly avail-
able for bacteria habitat extraction.

The pipeline utilizes deep neural networks, con-
ditional random field classifiers and vector space
models to solve the various subtasks and the code
is freely available at https://github.com/
TurkuNLP/BHE. In the following sections we
discuss our system, divided into three modules:
entity recognition, categorization and event ex-
traction. We then analyze the results and finally
discuss the potential future research directions.

Proceedings of the BioNLP 2017 workshop, pages 80-90,
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2 Method

2.1 Named entity detection

Detecting the BB3 HABITAT, BACTERIA and GE-
OGRAPHICAL mentions is a standard named entity
recognition task, evaluated based on the correct-
ness of the type and character offsets of the dis-
covered text spans. In our NER pipeline, all doc-
uments are preprocessed following the approach
of Hakala et al. (2016). In brief, we first con-
vert all documents and annotation files from UTF-
8 to ASCII encoding using a modified version
of publicly available tool designed for parsing
PubMed documents (Pyysalo et al., 2013) !. Next
we split documents into sentences using the Ge-
nia Sentence Splitter (Satre et al., 2007) and the
sentences are subsequently tokenized and part-of-
speech tagged using the tokenization and POS-
tagging modules in NERsuite 2, respectively.

To detect the entity mentions we use NERsuite,
a named entity recognition toolkit, as it is rela-
tively easy to train on new corpora, yet supports
adding novel user-defined features. In biomedical
NER, NERsuite has been a versatile tool achiev-
ing excellent performance for various entity types
(Onhta et al., 2012; Kaewphan et al., 2014, 2016),
however, it is not capable of dealing with overlap-
ping entities. Therefore, we only use the longest
spans of overlapping annotated entities as our
training data, ignoring embedded entities which
are substrings of the longest spans.

In biomedical NER, domain knowledge such
as controlled vocabularies has been crucial for
achieving high performance. In this work we pre-
pare 3 dictionaries, specific for each entity type.
For BACTERIA, we compile a dictionary of names
exclusively from the NCBI Taxonomy database’
by including all names under bacteria superking-
dom (NCBI taxonomy identifier 2). The scien-
tific names are expanded to include abbreviations
whose genus names are conventionally abbrevi-
ated with the first and/or second alphabet, whereas
the rest of the names, such as species epithet and
strains, remains unchanged. For HABITAT, we
combine all symbols from the OntoBiotope on-
tology * and use them without any further mod-
ifications. Similar to HABITAT, we also pre-
pare dictionary for GEOGRAPHICAL by taking all

'https://github.com/spyysalo/nxml2txt
“http://nersuite.nlplab.org/
3https://www.ncbi.nlm.nih.gov/taxonomy
*http://agroportal.lirmm.fr/ontologies/ONTOBIOTOPE
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strings under the semantic type geographical area
from UMLS database (version 2016AA) (Boden-
reider, 2004). All dictionaries prepared in this
step are directly provided to NERsuite through the
dictionary-tagging module without any normaliza-
tion. The tagging provides additional features de-
scribing whether the tokens are present in some
semantic categories, such as bacteria names or ge-
ographical places. For GEOGRAPHICAL model,
we also add token-level tagging results for loca-
tion from Stanford NER (SNER) (Finkel et al.,
2005) as binary values to NERsuite; 1 and O for
location and non-location, respectively.

Although utilizing dictionary features is benefi-
cial for NER, strict string matching tends to lead
to low coverage, an issue which is also common in
the categorization task. To remedy this problem,
we also generate fuzzy matching features based
on our categorization system (see Section 2.2) by
measuring the maximum similarity of each token
against the NCBI Taxonomy and OntoBiotope on-
tologies for BACTERIA and HABITAT respectively.
Thus, instead of a binary feature denoting whether
a token is present in the ontology or not, a sim-
ilarity score ranging from O to 1 is assigned for
each token. This approach is similar to (Kaewphan
et al., 2014), but instead of using word embedding
similarities, our fuzzy matching relies on character
ngrams. We do not use these features for the GEO-
GRAPHICALentities, which are not categorized by
our system.

In the official BB3 evaluation, NER is jointly
evaluated with either categorization or event ex-
traction system. In BB3-cat+ner task, SER (Slot
Error Rate) is used as the main scoring metric,
whereas in BB3-event+ner, participating teams
are ranked based on F-score of extracted rela-
tions. Due to the lack of an official evaluation
on NER for all entities in BB3-event+ner and
for GEOGRAPHICAL in BB3-cat+ner, we use our
own implementation by calculating the F-score
using exact string matching criteria as our main
scoring metric. In this study, we consider BB3-
event+ner as our primary subtask and thus all
hyper-parameters in model selection are optimized
against F-score instead of SER.

2.2 Named entity categorization

In the BB3 categorization subtask each BACTE-
RIA and HABITAT mention has to be assigned to
the corresponding ontology concepts, specifically



to NCBI Taxonomy and OntoBiotope identifiers
respectively. This task is commonly known as
named entity normalization or entity linking and
various approaches ranging from Levenshtein edit
distances to recurrent neural networks have been
suggested as the plausible solutions (Tiftikci et al.,
2016; Limsopatham and Collier, 2016).

Our categorization method is based on the com-
mon approach of TFIDF weighted sparse vector
space representations (Salton and Buckley, 1988;
Leaman et al., 2013; Hakala, 2015), i.e. the prob-
lem is seen as an information retrieval task where
each concept name in the ontology is considered
a document and the IDF weights are based on
these names. Consequently, each concept name
and each entity mention is represented with a
TFIDF weighted vector and the concept with the
highest cosine similarity is assigned for a given
entity. Whereas these representations are com-
monly formed in a bag-of-words fashion, in our
experiments using character-level ngrams resulted
in better outcome. In the final system we use
ngrams of length 1, 2 and 3 characters. These
ngram lengths produced the highest accuracy on
the official development set for both BACTERIA
and HABITAT entities, each entity type evaluated
separately. The TFIDF vectorization was imple-
mented using the scikit-learn library (Pedregosa
et al., 2011) and default parameter values except
for using the character level ngrams instead of
words.

For both included ontologies we use the pre-
ferred names as well as the listed synonyms to
represent the concepts. Since the task is restricted
to bacteria mentions instead of all organisms, we
also narrow down the NCBI Taxonomy ontology
to cover only the Bacteria superkingdom, i.e. the
categorization system is not allowed to assign tax-
onomy identifiers which do not belong to this su-
perkingdom. Otherwise all concepts from the used
ontologies are included.

As preprocessing steps we use three main ap-
proaches: abbreviation expansion, acronym ex-
pansion and stemming. For stemming we use the
Porter stemmer (Porter, 1980) and stem each to-
ken in the entities and concept names. Accord-
ing to our evaluation this is not beneficial for the
BACTERIA entities and is thus included only for
the HABITAT entities.

In biomedical literature the genus names in
BACTERIA mentions are commonly shortened af-
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ter the first mention, e.g. Staphylococcus aureus
is abbreviated as S. aureus, but the NCBI Taxon-
omy ontology does not include these abbreviated
forms as synonyms for the corresponding con-
cepts. Thus, if an entity mention includes a token
with a period in it, we expand the given token by
finding the most common token with the same ini-
tial from all previously mentioned entities of the
same type within the same document.

Another commonly used naming convention for
BACTERIA mentions is forming acronyms, e.g.
lactic acid bacteria is often referred to as LAB.
Consequently, when we detect a BACTERIA men-
tion with less than five characters or written in
uppercase, we try to find the corresponding full
form by generating acronyms for all previously
mentioned BACTERIA entities by simply concate-
nating their initials. However, many BACTERIA
acronyms do not follow this format strictly, e.g
Lactobacillus casei strain Shirota should be short-
ened to LcS instead of LCSS and Francisella tu-
larensis Live Vaccine Strain as LVS instead of
FTLVS. Thus, instead of using strict matching
to find the corresponding full form, we utilize
the same character-level TFIDF representations
as used for the actual categorization for these
acronyms to find the most similar full form. In our
evaluation, using the same approach for HABITAT
entities dramatically decreased the performance
hence was thus not used for this entity type (see
Section 3.2).

Both of these expansion methods have similar
intentions as the preprocessing steps utilized by
the winning system in BB3 (BOUN) by Tiftikci
et al. (2016), but our system uses more relaxed
criteria for finding the full forms and should thus
result in better recall at the expense of precision.

2.3 Event extraction

The BB3-event and BB3-event+ner tasks demand
extraction of undirected binary associations of two
named entities: a BACTERIA entity and either a
HABITAT or a GEOGRAPHICAL entity; and these
relations represent the locations in which bacteria
live. We thus formulate this task as a binary clas-
sification task and assign the label positive if such
relation holds for a given entity pair and negative
otherwise.

To address this task, we present a deep learning-
based relation extraction system that generates
features along the shortest dependency path (SDP)



Train Devel Test
Total sentences 527 319 508
Sentences w/examples 158 117 158
Sentences w/o examples 369 202 350
Total examples 524 506 534
Positive examples 251 177 -
Negative examples 273 329 -

Table 1: BB3-event data statistics.

which connects the two candidate entities in the
syntactic parse graph. Many successful relation
extraction systems have been built utilizing SDP
(Cai et al., 2016; Mehryary et al., 2016; Xu et al.,
2015; Bjorne and Salakoski, 2013; Bjorne et al.,
2012; Bunescu and Mooney, 2005) since it is
known to contain most of the relevant words for
expressing the relation between the two entities
while excluding less relevant and uninformative
words. Since this approach focuses on a single
sentence parse graph at a time, it is unable to detect
plausible cross-sentence relations, i.e, the cases in
which the two candidate entities belong to differ-
ent sentences. As discussed by Kim et al. (2011),
detecting such relations is a major challenge for
relation extraction systems. We simply exclude
any cross-sentence relations from training, devel-
opment and test sets.’ Table 1 summarizes the
statistics of the data that is used for building our
relation extraction system after removing cross-
sentence relations.

2.3.1 Preprocessing

For preprocessing, we use the preprocessing
pipeline of the TEES system (Bjorne and
Salakoski, 2013) which automates tokenization,
part-of-speech tagging and sentence parsing.
TEES runs the BLLIP parser (Charniak and John-
son, 2005) with the biomedical domain model cre-
ated by McClosky (2010). The resulting phrase
structure trees are then converted to dependency
graphs (nonCollapsed variant of Stanford Depen-
dency) using the Stanford conversion tool (version
2.0.1) (de Marneffe et al., 2006).

2.3.2 Relation extraction system architecture

The architecture of our deep learning-based rela-
tion extraction system is centered around utiliz-
ing three separate convolutional neural networks
(CNN): for the sequence of words, the sequence of

3Official evaluation results on the development and test
data are of course comparable to those of other systems: any
cross-sentence relations in the development/test data count
against our submissions as false negatives.
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POS tags, and the sequence of dependency types
(the edges of the parse graph), along the SDP con-
necting the two candidate entities (see Figure 1).
Even though the parse graph is directed, we re-
gard it as an undirected graph and always traverse
the SDP by starting the path from the BACTERIA
entity mention to the HABITAT/GEOGRAPHICAL,
regardless of the order of their occurrence in the
sentence. Evaluation against the development set
showed that this approach leads to better general-
ization in comparison with simply traversing the
path from the first occurring entity mention to the
second (with/without considering the direction of
the edges).

The structure of each CNN is similar: the words
(or POS tags or dependency types) in the sequence
are mapped into their corresponding vector repre-
sentations using an embedding lookup layer. The
resulting sequence of vectors is then forwarded
into a convolutional layer which creates a convo-
lution kernel that is applied on the layer input over
a single spatial dimension to produce a tensor of
outputs. These outputs are then forwarded to a
max-pooling layer that gathers information from
local features of the SDP. Hence, the three CNNs
produce three vector representations.

Subsequently, the output vectors of the CNNs
and two 1-hot-encoded entity-type vectors are
concatenated. The first entity-type vector repre-
sents the type of the first occurring entity in the
sentence (BACTERIA, HABITAT or GEOGRAPH-
ICAL), and the other is used for the second one.
The resulting vector is then forwarded into a fully
connected hidden layer and finally, the hidden
layer connects to a single-node binary classifica-
tion layer.

For the word features, we use a vector space
model with 200-dimensional word embeddings
pre-trained by Pyysalo et al. (2013). These are
fine-tuned during the training while the POS-tag
and dependency type embeddings are learned from
scratch after being randomly initialized.

Based on experiments on the development set,
we have set the dimensionality of the POS tag em-
beddings to 200, and for dependency types to 300.
For all convolutional layers, the number of filters
has been set to 100 and the window size (filter
length) to 4. Finally, dimensionality of the hid-
den layer has been set to 100.The ReLU activation
function is applied on the output of the convolu-
tional layers while we apply sigmoid activation to
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Figure 1: Proposed network architecture.

the output of the hidden layer. to be positive if at least ¢ classifiers have predicted
it to be positive, otherwise, it will be considered as
2.3.3 Training and optimization a negative. Obviously, the lowest threshold value

We use binary cross-entropy as the objective  (f = 1) produces the highest recall and lowest pre-
function and the Adam optimization algorithm  cision and the highest threshold (¢ = 15) produces
(Kingma and Ba, 2014) for training the network. the highest precision and lowest recall and the aim
Applying the dropout (Srivastava et al., 2014) with is to find be best threshold value which maximizes
rate of 50% on the output of the hidden layer is the ~ the F-score.

only network regularization method used to avoid Our experiments on the development set (us-
overfitting. ing the proposed network architecture) showed

that for the BB3-event task the optimal results
are achieved when we train the networks for 2
epochs and set the threshold value to 4, and for the
BB3-event+ner task, when we train the networks
for 2 epochs and set the threshold value to 3.

When the number of weights in a neural net-
work is high and the training set is very small (e.g.,
there are only 524 examples in the BB3-event
training set), the initial random state of the model
can have a significant impact on the final model
and its generalization performance. Mehryary
et al. (2016) have reported that the F-score on the
development set of BB3-event task can vary up to 3.1 Named entity detection
9 percentage points based on the different initial  For the named entity detection task, we obtain
random state of the network. the baseline performance by training NERsuite for

To overcome this problem, we implement the  each entity-type independently. As shown in Ta-
simple but effective strategy proposed by them, ble 2, the F-scores for BACTERIA, GEOGRAPH-
which consists of training the neural network  1CAL and HABITAT are 0.713, 0.516 and 0.482
model 15 times with different initial random  respectively. The baseline performance of HABI-
states, predicting the development/test set exam-  TAT and GEOGRAPHICAL models is significantly
ples and aggregating the 15 classifiers’ predictions  lower than BACTERIA.
using a simple voting algorithm. For all entities, adding dictionary features im-

For each development/test example, the voting  proves the performance of the model. A substan-
algorithm combines the predictions based on a  tial improvement in F-score is found for GEO-
given threshold parameter ¢: the relation is voted =~ GRAPHICAL where the performance is increased

3 Results and discussion
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Entity/Experiment  Precision Recall F-score
Bacteria

BB3 0.787 0.652  0.713
BB3 + dict 0.833 0.697  0.759
BB3 + tfidf 0.793 0.660  0.720
BB3 + tfidf + dict 0.822 0.717  0.766
BB3 + BB2 + dict 0.902 0.713  0.796
BB3 + BBI + dict 0.893 0.721 0.798
Habitat

BB3 0.589 0.407  0.482
BB3 + dict 0.649 0465  0.541
BB3 + tfidf 0.697 0482  0.570
BB3 + tfidf + dict 0.715 0.520  0.602
BB3 + BB2 + dict 0.560 0.500  0.529
Geographical

BB3 0.667 0.421 0.516
BB3 + dict 0.719 0.605  0.657
BB3 + SNER 0.694 0.658  0.676
BB3 + dict + SNER  0.788 0.684  0.732
BB3 + BB2 + dict 0.903 0.737  0.812

Table 2: The performance of our named entity de-
tection system on BACTERIA, HABITAT and GE-
OGRAPHICAL mentions using internal evaluation
system. The models are evaluated on the BB3 de-
velopment data.

by more than 14pp compared to 6pp and Spp for
HABITAT and BACTERIA, respectively. Adding
fuzzy matching features further improves the F-
score for HABITAT by more than 12pp compared
to 8pp for BACTERIA. This result shows that hav-
ing both domain knowledge and relaxed matching
criteria can significantly enhance the model per-
formance.

We improve equally the baseline performance
for GEOGRAPHICAL by adding features from
SNER tagging. The increase in F-score, 0.657
versus 0.676, is about the same as independently
adding UMLS-geographical area dictionary fea-
tures. Further increase in F-score is achieved by
combining both features, likely due to the ex-
panded coverage of geographical names.

The BB3 corpus is relatively small in terms of
entity frequency and the number of unique entities.
We explore the possibility of increasing model
performance through adding additional training
data from previously organized BB Shared Tasks
(i.e, BB1 (Bossy et al., 2011) and BB2 (Bossy
et al., 2013)). Annotations for BACTERIA men-
tions are available in both BB1 and BB2 Shared
Tasks and we thus train NERsuite models by
adding these annotations to the training data. The
results show that the models, trained with addi-
tional datasets, achieve higher performance. BB1
provides a slightly better F-score than BB2, 0.798
vs 0.796.
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For GEOGRAPHICAL and HABITAT entities,
compatible annotations are only available from
BB2 (Bossy et al., 2013), subtask 2. We thus train
NERsuite for both HABITAT and GEOGRAPHI-
CAL by using combined BB3 and BB2 data. The
result for GEOGRAPHICAL is similar to the one
observed with BACTERIA and additional data can
increase the model F-score by more than 15pp.
However, the result for HABITAT is different as
F-score slightly drops from 0541 to 0.529. The
best NER model for HABITAT thus remains un-
changed.

Finally, we train our final model by combining
training and development datasets and use hyper-
parameters obtained from the best performing sys-
tem on development dataset. The official evalua-
tion of the NER task jointly with either catego-
rization or event extraction system is discussed in
Section 3.2 and Section 3.3, respectively.

3.2 Categorization

To analyze our categorization approaches, we
evaluate their performance on the official develop-
ment set. During the development we used accu-
racy for evaluating the effects of different hyper-
parameters and preprocessing steps. To get com-
parable results to previous systems we, however,
report the results in this paper using the precision
scores from the official evaluation service. As the
used ontologies form hierarchical structures, the
official evaluation penalizes the incorrect predic-
tions based on the distance from the gold standard
annotations, whereas our internal accuracy evalua-
tion measures exact matches. Our accuracy scores
and the official evaluation seem to correlate to the
level that all improvements validated using the ac-
curacy score also improved the performance ac-
cording to the official evaluation.

The performance of our system and various pre-
processing steps are shown incrementally in Ta-
ble 3. As a baseline system we use TFIDF bag-
of-words representations without any of our pre-
processing steps. By simply switching to charac-
ter level representations the precision is increased
by 1.3pp for HABITAT and 14.1pp for BACTERIA
mentions.

Adding the abbreviation expansion step further
improves precision for BACTERIA by 14.1pp, but
does not influence HABITAT entities as most likely
there are no abbreviated mentions in this category.
The acronym expansion has a lesser, but still no-



ticeable impact and improves precision for BAC-
TERIA by 4.9pp. However, applying this method
to HABITAT entities decreases the performance by
4.5pp and is thus left out in the final system for this
entity type. This is probably due to the fact that we
consider all tokens with less than 5 characters to
be acronyms, which seems to hold for BACTERIA
mentions, but is a bad assumption for HABITAT
entities. The final preprocessing step, stemming,
improves the performance on HABITAT entities by
mere 1.3pp, but has a negative impact on BACTE-
RIA and is left out for this entity type in the final
system.

The results on the official test set are consis-
tently lower than on the development set for both
entity types (see Table 4), suggesting that the
hyperparameters selected based on the develop-
ment set might have been slightly overfit on this
data. However, our system is able to outperform
BOUN (Tiftikci et al., 2016), the winning system
from the BioNLP’16 BB3 Shared Task, by 1pp,
1.5pp and 1.2pp on HABITAT, BACTERIA and all
entities respectively.

Since the BB3 tasks do not evaluate named en-
tity recognition independently, but only in con-
junction with either categorization or event ex-
traction, we also report the official numbers for
the BB-cat+ner task in Table 5. In this com-
bined evaluation our system is not able to reach
the performance level of the state-of-the-art sys-
tem Taglt (Cook et al., 2016), but does outperform
the other systems which participated in the given
subtask.

Our combined system is also performing clearly
worse on the test set than on the development set.
Unfortunately, due to the test set being blinded,
we are unable to specify the exact cause for this.
However, the official evaluation service does pro-
vide relaxed evaluation modes where e.g. entity
boundaries are ignored, i.e. the evaluation fo-
cuses on the categorization task. Based on these
evaluations our categorization system seems to
perform on the same level on both development
and test sets, but the performance of our NER
model drops, especially for the BACTERIA men-
tions. This might be simply due to overfitting on
the development set, but requires further investi-
gation.
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Habitat Bacteria  Overall
BOW TFIDF 0.634 0.531 0.568
Char TFIDF 0.647 0.672 0.656
+ abbreviations 0.647 0.813 0.705
+ acronyms 0.602 0.862 0.693
+ stemming 0.660 0.858 0.729
Final system 0.660 0.862 0.731

Table 3: Evaluation of our categorization sys-
tem with different preprocessing steps compared
to a baseline system with TFIDF weighted bag-
of-words (unigrams) representations. The scoring
is produced by the official evaluation service. Any
added processing step, which decreases the perfor-
mance is left out for the given entity type for the
following experiments.

Habitat Bacteria  Overall
Our system 0.630 0.816 0.691
BOUN 0.620 0.801 0.679

Table 4: Comparison of our entity categoriza-
tion system and the best performing system in
BioNLP’16 BB3 Shared Task on the test set using
the official evaluation service.

Habitat Bacteria  Overall
Development set
Our system 0.645 0.377 0.553
Taglt 0.511 0.303 0.439
Test set
Our system 0.804 0.706 0.766
Taglt 0.775 0.399 0.628

Table 5: Official results for the combined evalu-
ation of named entity recognition and categoriza-
tion compared against the state-of-the-art system.
The results are evaluated in slot error rate (SER),
i.e. a smaller value is better. The scores for the
Taglt system are as reported in their paper.

3.3 Event extraction

As discussed earlier, there are two tasks in the
BB3 which involve extracting the relations be-
tween BACTERIA and HABITAT/GEOGRAPHICAL
entities: (1) The BB3-event task, for which all
manually annotated entities are given (even for
the test set). This task aims to assess the per-
formance of relation extraction systems; (2) The
BB3-event+ner task, for which, entities for the test
set are hidden and the aim is assessing the joint
performance of the NER and the relation extrac-
tion systems.

It should be highlighted that the performance
of the NER system has a direct impact on the
relation extraction system and subsequently on
the performance of an end-to-end system for the



BB3-event+ner task. On one hand, if the NER
system produces extremely low recall outputs, the
relation extraction system will fail to extract some
of the valid relations, simply because it only inves-
tigates the existence of possible relations among
the given entities. On the other hand, if the NER
system provides high recall but very low precision
predictions, this means that words mistakenly de-
tected as valid entities are given to the relation
extraction system. For each given entity, the re-
lation extraction system pairs it with other pro-
vided entities in the sentence and tries to classify
all candidate pairs. Hence, invalid entities will
lead to generation of candidate pairs in which one
or even both of the entities are actually invalid.
Since the relation extraction system is trained on
valid entity pairs, i.e., (BACTERIA,HABITAT) or
(BACTERIA,GEOGRAPHICAL), it can easily pro-
duce a plethora of false-positives and hence, its
precision will dramatically drop.

To summarize, if the NER system performance
is low (low precision and/or low recall), even a
very high-performance relation extraction system
will not be able to compensate. Thus, when build-
ing an end-to-end system, the joint performance
of NER and relation extraction should be assessed
since individual performances do not reflect how
efficiently the system will work in real-world ap-
plications.

The official performance of our relation extrac-
tion system alone when evaluated against the test
set of the BB3-event task is 0.512 measured in F-
score (0.444 recall and 0.605 precision), achieving
the third place among Shared Task participants for
this task.

Dataset Overall Habitat Geography
Development set

With sub-optimal 0423 0390 0.576
entities

With optimal 0429 0395 0.604
entities

Test set

With sub-optimal 0372 0.388 0.207
entities

With optimal 0381  0.386 0.319

entities

Table 6: Combined performance of our named en-
tity recognition and event extraction systems on
the event+ner task reported in F-score as measured
by the official evaluation service.

For the BB3-event+ner task, the official results
on the development and the test set are given in Ta-
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ble 6. As discussed earlier, to increase the perfor-
mance of the NER system, we combine the BB3
with older BB datasets. This leads to the best pre-
diction performance (denoted as optimal). Thus,
we report and compare the overall performance
of the end-to-end system when we use these en-
tities. To establish a fair comparison with previ-
ously published systems we also report results for
models trained only on the BB3 (denoted as sub-
optimal). As Table 6 shows, using previous BB-
ST data for training the NER leads to 3pp increase
in F-score of (BACTERIA,GEOGRAPHICAL) rela-
tions on the development set and about 11pp for
the test set, probably due to the drastically in-
creased performance for GEOGRAPHICAL entity
detection. Unfortunately, since there are much
less (BACTERIA,GEOGRAPHICAL) relations than
(BACTERIA,HABITAT) relations in the data, our
approach increases the overall F-score only by 1pp
for the test set.

Table 7 compares the performance of our end-
to-end system with the winning team in the
BB3-event+ner task (LIMSI, developed by Grouin
(2016)). As it can be seen in the table, our sys-
tem outperforms the winning team by 19pp in F-
score, achieving the new state-of-the-art score for
the task. Even if we solely rely on BB3 data for the
NER system, the improvement is 18pp in F-score.
We emphasize that no other data than BB3 is used
for training/optimization of our relation extraction
system in any way.

Teams F-score Recall Precision SER

LIMSI 0.192 0.191 0.193  1.558

Our system 0.381 0.292 0.548 0.891
Table 7: Official evaluation results for BB3-

event+ner test data of our system compared to
LIMSI, the winning team in the Shared Task.

4 Conclusions and future work

In this work, we introduced an open-source end-
to-end system, capable of named-entity detec-
tion/normalization and relation extraction to ex-
tract information about bacteria and their habitats
from text. Our system is trained and evaluated on
the BioNLP Shared Task 2016 Bacteria Biotope
data.

According to the official evaluation, our entity
detection and categorization system would have
achieved the second place in BB3. Compared to
the best performing system on cat+ner, Taglt, we



consider that our approach on NER can still be
improved, especially for HABITAT entities. First,
we consider employing a post-processing step in
order to recover embedded entities which are not
currently handled by NERsuite. An effective post-
processing step should have a substantial impact
on our NER system as the embedded entities ac-
counted for over 10% of all HABITAT mentions.

Our categorization system outperforms the best
performing system of BB3 by 1.2pp in the offi-
cial evaluation, constituting the new state-of-the-
art for this task. Our system also relies less on
rule-based or heuristic preprocessing steps and
uses the same general approach for both BACTE-
RIA and HABITAT mentions suggesting that it will
be more adaptable for new entity types.

As 9.6% of the HABITAT entities in the official
training set have more than one gold standard on-
tology annotation whereas our current system is
only assigning a single concept for each entity, one
future work direction is to assess different ways of
associating entities with multiple concepts. In the
simplest form this could be implemented by defin-
ing a similarity threshold instead of selecting only
the best matching concept.

Since the character level ngrams resulted in sig-
nificantly better performance than our word level
baseline, the exploration of character level neural
approaches is also warranted for the categorization
task and will be tested in the future.

Official evaluation shows that the joint perfor-
mance of entity detection and relation extraction
of our end-to-end system outperforms the winning
team by 19pp on F-score, establishing a new top
score for the event+ner task. In this work we did
not use previous BB Shared Task data for training
the relation extraction system. However, as a fu-
ture work we would like to investigate the effect
of utilizing previous BB Shared Task data.

As a future work, we would like to run our sys-
tem on large-scale, on all PubMed abstracts and
PubMed Central Open Access full articles to form
a publicly available knowledge base.

We highlight that the methods discussed and
used in this work are not only applicable for BB3
tasks and can be beneficial for other entity detec-
tion/normalization and relation extraction projects
as well.
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Abstract

Text mining automatically extracts infor-
mation from the literature with the goal
of making it available for further analy-
sis, for example by incorporating it into
biomedical databases. A key first step
towards this goal is to identify and nor-
malize the named entities, such as pro-
teins and species, which are mentioned in
text. Despite the large detrimental im-
pact that viruses have on human and agri-
cultural health, very little previous text-
mining work has focused on identifying
virus species and proteins in the literature.
Here, we present an improved dictionary-
based system for viral species and the
first dictionary for viral proteins, which
we benchmark on a new corpus of 300
manually annotated abstracts. We achieve
81.0% precision and 72.7% recall at the
task of recognizing and normalizing viral
species and 76.2% precision and 34.9% re-
call on viral proteins. These results are
achieved despite the many challenges in-
volved with the names of viral species and,
especially, proteins. This work provides a
foundation that can be used to extract more
complicated relations about viruses from
the literature.

1 Introduction

Viruses are major human and agricultural
pathogens. Influenza A in the US alone costs
billions of dollars each year in lost wages and
medical expenses (Molinari et al., 2007). World-
wide, Influenza, Human papilloma virus and
Hepatitis C virus are each responsible for at least
a quarter of a million deaths each year (WHO,
2014). At the same time, viruses such as Zika
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virus are emerging as global health threats as
the habitats of their vectors are expanding due
to climate change (Mills et al., 2010; Fauci and
Morens, 2016). Such arboviruses are previously
neglected diseases, and as such vaccines and
antiviral drugs are not available for them, posing
a large health risk.

The impact of outbreaks in livestock can also be
immense. The 2001 Foot and mouth disease virus
outbreak in the UK cost an estimated 8 billion
(Knight-Jones and Rushton, 2013) and still today
much remains unknown about the virus, includ-
ing the mechanisms for persistent infection (Paul
et al., 2010), and the virus’ interactions with the
immune system that may aid cross serotype vac-
cine production (Paton and Taylor, 2011).

The study of viruses is aided by bioinformat-
ics resources such as protein—protein interaction
databases. Having a comprehensive picture of a
virus protein’s interaction partners is crucial to the
understanding of the viral lifecycle and aids in the
search for vaccines and antiviral drugs (Shah et al.,
2015). However, manually creating and maintain-
ing such resources is a cost, time and labour in-
tensive endeavour (Attwood et al., 2015). Text
mining provides a means to automatically iden-
tify relevant publications and the entities of inter-
est that are mentioned in them quickly and at low
cost. A first step towards building these resources
for viruses is the identification of viral species and
their proteins in text.

1.1 Background

Text mining for viruses presents several chal-
lenges over text mining for species of cellular or-
ganisms. Viruses are often known by many differ-
ent names, either because a virus was identified
in different countries and given different names
(e.g. Bovine pestivirus and Bovine viral diarrhoea
virus), or because the taxonomy has changed (e.g.
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polyomaviruses). Another source of synonyms is
the use of the disease that the virus causes in place
of the virus name.

Viral proteins are even more challenging to text
mine, as they are often referred to by one-letter
names such as E or M. Further, even if their names
are longer, they can be written in many different
orthographic variants e.g. U(S)11, Us11, or US11.
Viral proteins may also have many synonyms re-
lated to the gene name, position on a segment,
or may be referred to by their function e.g. “the
polymerase”. Some RNA viruses have polypro-
teins which complicates their analysis. Their vi-
ral mRNA codes for a single open reading frame
that is translated to a polypeptide product, which
is then post translationally cleaved into functional
protein products. Bioinformatics databases such
as UniProt (The UniProt Consortium, 2014) of-
ten give first class identifiers to the polyprotein but
not to the cleavage products, thus complicating the
process of referring to the functional protein prod-
uct.

These challenges can be mitigated by using a
dictionary approach to text mining. In such an ap-
proach, comprehensive dictionaries are created to
contain all the alternative names that are likely to
be referred to in a corpus. In this work, we have
chosen to use a dictionary based method based on
the success of this approach to identify bacteria
species and biotopes (Cook et al., 2016). We have
chosen to use curated databases (NCBI taxonomy
and UniProt) to populate the dictionary instead of
other approaches such as unsupervised methods to
learn which items are named entities (Neelakan-
tan and Collins, 2014), as the data available in
these databases is high quality and openly avail-
able. Furthermore, starting with a resource dra-
matically reduces the difficulty of normalization
of recognized entities.

Previous work in this field includes LINNAEUS
(Gerner et al., 2010), a dictionary-based system
that is also designed to recognize species in ab-
stracts. The SPECIES tagger (Pafilis et al., 2013)
is a newer and faster dictionary system that aims
to identify names of any species in biomedical ab-
stracts. SPECIES has achieved good performance
when tagging names of viruses species in abstracts
from virology journals. A more recent and spe-
cialized effort used the dictionary and template-
based ANDSystem to text mine the HCV interac-
tome (Saik et al., 2015).

92

Here, we improve on the SPECIES dictionary
for all virus species, and additionally tag names
of virus proteins for those proteins that have ref-
erence proteomes in UniProt. We have created
viral species and protein dictionaries, and a gold-
standard corpus that has been annotated by 4 hu-
man annotators.

2 Availability

The version of the dictionaries used
in  this publication are available at
http://figshare.com/articles/

virus_entities_tsv/4721287 and

the most recent version will be available at
http://download. jensenlab.org/.
The V300 corpus and annotator guide-
lines is publicly available at http:
//www.tagtog.net/—corpora. The eval-
uation code is available at http://github.
com/bitmask/textmining-stats.

The tagger software used for this work is
available at http://bitbucket.org/
larsjuhljensen/tagger.

3 Methods

3.1 Dictionary creation and tagging

Virus names were taken from NCBI Taxonomy
(Sayers et al., 2009) and included all synonyms at
all taxonomic levels under the viruses superking-
dom. Disease names were taken from the Disease
Ontology (Kibbe et al., 2015) and were manually
mapped onto the correct virus taxid, giving an ad-
ditional 387 names for 102 species that are hu-
man pathogens. This resulted in a total of 173,367
names for 150,885 virus tax levels.

Virus species name acronyms were taken from
the ninth ICTV report on virus taxonomy (King
et al., 2012) by text mining the document and ex-
tracting any text in parentheses that appears to be
an acronym and that follows a match for a virus
name. This way we found 778 acronyms, more
than 500 of which were not found in the previous
sources, for 662 virus species.

Virus protein names were taken from UniProt
reference proteomes (The UniProt Consortium,
2014) as of Aug 31, 2015. Viruses that did not
have complete proteomes were not included in the
protein dictionary, although they are included in
the species dictionary. Protein names and syn-
onyms were taken from all fields in the UniProt
record, including the protein name, short name,



gene, and chain entries if the protein is a polypro-
tein. Additionally, many variants of the protein
names were generated following a set of rules to
cover orthographic variation, such as “X protein”
is expanded to “protein X’ and “X”. For a com-
plete list of rules, refer to the code. This resulted
in 16,580 proteins with 112,013 names from 397
virus species.

Stopwords were adapted from the text mining
done for the text-mining channel of the STRING
database (Szklarczyk et al., 2015). Additional
stopwords were found by running the dictionary
over all documents in PubMed and inspecting the
100 most frequent matches to determine if they
should be stopworded. Although normally consid-
ered to be stopwords by the tagging system, spe-
cific one and two letter names from the dictionary
were permitted to be matches to enable finding
very short protein names.

Automated tagging used the dictionaries de-
scribed above and the tagger text-mining system
developed for the SPECIES resource (Pafilis et al.,
2013).

3.2 Corpus creation and gold standard
creation

300 abstracts were selected randomly by filtering
abstracts mentioned in reviewed UniProt entries
for viral proteins for top virology journals as deter-
mined by impact factor. Documents were divided
among four annotators such that each pair of an-
notators shared 10 documents, implying that 20%
of the documents were annotated by two annota-
tors. These overlapping documents were used to
calculate inter-annotator agreement (IAA), and the
annotators were blind to which documents were in
this set throughout the project.

Annotation guidelines were agreed upon fol-
lowing the annotation of 10 documents in a pilot
set, which were not used in the evaluation of IAA
or to assess the performance of the tagger. All ab-
stracts were manually annotated using tagtog (Ce-
juela et al., 2014), an online system for text min-
ing. Species names were normalized to NCBI tax-
onomic identifiers. Protein names were normal-
ized to UniProt entry names, unless they were the
cleavage product of a polyprotein, in which case
they were normalized to their chain name.

3.3 Evaluation

The IAA among the human annotators was deter-
mined separately for viral species and proteins by
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determining the number of annotations that over-
lap and contain the same normalization. Bound-
aries of annotations were considered to match if
the annotations overlapped.

Species normalizations were considered to
match if one was a parent of the other and if both
were at or below species level, or if both were be-
low species level and had a common parent. For
example, both of the following pairs were con-
sidered matches: “Influenza A” and “Influenza A
HIN1”, and “Influenza A HIN1” and “Influenza
A H7N9”. This allowed for an annotation to not
be penalized if the strain was annotated instead of
the species, or if two different strains of the same
species were annotated. Protein normalizations
were considered to match if they were within 90%
identity according to BLAST (Zhang et al., 2000).

IAA was measured by F-score, however since
we allow boundaries to overlap, this measure may
not be symmetric. If one annotator has annotated
“long form (short form)” as one annotation, and
another annotator has annotated it as two annota-
tions, then this will count as one true positive when
comparing the first annotator to the second, but as
two true positives when comparing the second an-
notator to the first. To avoid this asymmetry, we
counted all the true positives, false negatives and
false positives across both annotators.

The guidelines specify that if a span refers to
multiple entities, then it should be normalized to
each of them. Each normalization was treated as
contributing separately to the number of true or
false positives. A special case was established
for Adenovirus, which is a large genus containing
very many species of viruses that have a highly
conserved set of proteins. Adenovirus proteins are
often referred to in general in the literature, with-
out specifying a specific species. Manual anno-
tation of Adenovirus proteins required that only
one representative protein from one species be
tagged, thus effectively treating this genus as a sin-
gle species.

The recall and precision of the tagger was cal-
culated against the consensus of the human an-
notations. The consensus was determined as fol-
lows. If only one annotator annotated the doc-
ument, their annotations were taken as the gold
standard. The annotations were similarly accepted
as the gold standard if two annotators agreed on
position and normalization. However, if there was
a disagreement, then a third annotator was asked to



resolve it. For positions that overlapped, the union
of the spans was used as the consensus.

The precision and recall were calculated in three
different ways. The first method required that
the boundaries and normalizations of the con-
sensus and tagger annotations match. The sec-
ond method, “boundaries only”, required only the
boundaries of the annotations to match. The last
method, “document level normalization”, com-
pared the lists of unique normalizations found in
the document, regardless of position and number
of occurrences.

4 Results and Discussion

4.1 Corpus and Inter-annotator agreement

The corpus consisted of 300 documents with 1,826
species and 2,540 protein annotations. There was
overall good agreement between annotators for
both species and proteins. The mean IAA F-score
for species was 87.3%, and considering bound-
aries only was 90.0%. For proteins, the mean IAA
F-score was 76.5%, which rose to 86.9% when
considering boundaries only. Detailed results are
shown in figure 1.

There was substantial agreement between anno-
tators regarding the location of species and protein
annotations, and there was also good agreement on
the normalization of species. However, there was
less agreement among protein normalizations than
those for species. 26% of these disagreements in-
volve one annotator normalizing a protein name to
a UniProt entry, and the second annotator report-
ing the normalization as unknown. An additional
20% of the disagreement is due to an annotator
normalizing a span to multiple entities and another
annotator normalizing it to fewer entities. Such
cases, in which an abstract discusses a protein
in one virus and compares it to a closely related
protein, can be ambiguous and refer to the pro-
tein without being completely clear about which
species is being referred to.

However, the largest part this disagreement
comes from instances in which annotators have
normalized to different proteins that are different
enough to not pass the 90% identity BLAST cri-
terion. Manual inspection of these proteins indi-
cate that the majority are correct, but that fast vi-
ral evolution has caused the protein sequences of
similar isolates to diverge. The set of documents
randomly chosen to calculate IAA was unlucky to
contain a few documents containing proteins that
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Rudolfs 0.9 0.78 0.92 0.77 0.85 0.82

fscore

0.9

Juanmi 0.94 0.84 0.94 0.73 0.62 0.86

0.8

Helen 0.85 0.92 0.83 0.8 0.86 0.85

0.7

Cristina 0.85 0.95 0.9 0.9 0.82 0.93

Cristina Helen Juanmi Rudolfs Cristina Helen Juanmi Rudolfs

Figure 1: Inter-annotator agreement for viral
proteins and species. Above the diagonal both
normalization and boundaries are required to be
correct, below the diagonal only identification of
boundaries are required to be correct.

are quite divergent, but this is not representative of
the whole corpus. This can be seen by dropping
the BLAST identity criterion to 50%, which then
accounts for 29% of the difference between anno-
tators, but increases the tagger precision and recall
by only 1%.

4.2 Tagger performance for species

The automatic tagger achieved 81.5% precision
and 73.3% recall for the combined task of rec-
ognizing and normalizing viral species. When
requiring only the boundaries to be correct, i.e.
recognition but not normalization, the precision
and recall were 93.1% and 79.8% respectively. At
the document level, the normalization precision
was 74.9% and the recall was 85.4%. Results are
summarized in table 1. Combined, this shows that
if the tagger identifies a viral species, it is very
likely that a viral species is mentioned at the re-
ported position, and it is also likely that the tagger
has normalized it correctly. Also, the tagger cor-
rectly identifies most of the species that are men-
tioned in a document.

In 43% of the cases of incorrect species nor-
malization, the tagger has identified both the cor-
rect species normalization and additional normal-
izations with the same abbreviation. For example,
the tagger normalized SV40 to “Simian virus 407,
which is correct, but also to “Polyomavirus sp.”
under unclassified Polyomaviridae because both
taxa have SV40 as an abbreviation in the NCBI
taxonomy. The abbreviation SV40 will thus count
as both a true positive and a false positive with re-
spect to normalization. If instead such partially
correct normalizations were counted only as true
positives, the precision would rise from 81.5% to
85.8%.



The tagger does not attempt to correctly identify
all referenced entities in sentence constructs such
as “HSV types 1 and 2” although such normal-
izations are obvious to human annotators. More
ambiguously, papers that discuss Influenza pro-
teins or Adenovirus proteins, without specifying
the species (such as Influenza A, or Adenovirus
type 1) are not clear about what exactly is being
referred to.

In an additional 32% of the cases of incorrect
species normalization, an annotator identified the
virus as unclassified in which case it and the taxa
identified by the tagger joined the taxonomic tree
above the species level, and so was not considered
to be a match by the matching code. If the match is
relaxed to genus level, then the precision will rise
from 81.5% to 85.0% and to 86.3% if accepting
also partially correct normalizations as described
above.

Despite efforts to be comprehensive, some ab-
breviations are missing from the virus dictionary,
for example the abbreviations Ad2 and Ad5 for
Adenovirus type 2 and 5 respectively were not
included in the dictionary. The tagger does con-
tain logic to identify and expand acronyms on the
fly, but has very strict matching criteria to prevent
false positives (Pafilis et al., 2013). Further, syn-
onyms that are not present in NCBI taxonomy will
not be identified. For example “Blackberry yel-
low vein disease” was not identified as as synonym
for “Blackberry yellow vein virus” and so was not
found by the tagger. This could be improved with
more comprehensive synonym generation.

The tagger will tag all instances of entries in its
dictionary, even in contexts that are not appropri-
ate. The annotation guidelines state that viruses
that are used as vectors should not be tagged, since
the scientific work they are mentioned in is not pri-
marily about the virus. However, this is a matter
of opinion and the opposite case could also be ar-
gued. Regardless, the tagger cannot distinguish
the context in which viruses are mentioned, and
will blindly tag all occurrences of the virus name.

4.3 Tagger performance for proteins

For combined recognition and normalization of vi-
ral proteins, the precision and recall of the tagger
were 76.2% and 34.9% respectively. Observing
boundaries only, the precision and recall rose to
87.4% and 40.0% respectively. At the document
level, the normalization precision was 76.2% and
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Precision | Recall

Normalisation 81.5% | 73.3%
Boundaries only 93.1% | 79.8%
Doc level normalisation | 74.9% 85.4%
Partially correct norm 85.8% | 73.3%
Match at genus level 85.0% | 73.5%
Previous two criteria 86.3% | 73.5%

Table 1: Summary of species precision and re-
call for different evaluation criteria: Normaliza-
tion and recognition, recognition of boundaries
only, normalization at the document level, treating
entities that have been normalized to multiple en-
tities as correct if one of the normalizations is cor-
rect, relaxing the matching criterion to the genus
level, and finally allowing both of the previous two
criteria.

the recall was 38.1%. Results are summarized in
table 2.

Since viral protein names are so short and not
unique to one species, the tagger will only tag pro-
tein names for species that have already been iden-
tified. This means that the theoretical upper bound
for tagging proteins is equivalent to the species
document level normalization recall (85.4%) as-
suming that all the proteins are present in the dic-
tionary. However, the dictionary only contains
protein names for species that are contained in re-
viewed UniProt proteomes, a total of 348 species
and 88.1% of the proteins mentioned in the corpus.
This gives a maximum possible recall of 75.2% for
proteins. Conversely, since the tagger detects pro-
teins only after the species has been detected, the
normalization of the viral proteins that are found
is quite accurate.

Considering only annotation of the proteins in
the dictionary, the precision was 86.0% and the
recall 35.5%. Recall does not change significantly
from considering all proteins because there are 10
times more false negatives due to not locating the
protein compared to false negatives due to incor-
rectly normalizing the protein. At the document
level, the normalization precision of proteins that
were present in the dictionary is 77.1% and the re-
call is 50.7%.

Viral proteins are very hard for the tagger to
identify due to the diversity of names that are used
to refer to them. For example, the tagger has
missed 97% of names in which the protein is re-
ferred to by its molecular weight (e.g. “the 33K



protein”). Including these synonyms would in-
crease the recall by 4 percentage points. Similarly,
the tagger has tagged only 10% of the cases in
which the viral protein is referred to by its func-
tion (e.g. “the helicase”). Including these syn-
onyms would increase the recall by 6 percentage
points. As observed for species, the tagger does
not recognize novel abbreviations, such as “sGP”
for the Ebola virus nonstructural small glycopro-
tein, and such constructs are used quite frequently
in the literature. Better on-the-fly acronym identi-
fication in the tagger may help increase this recall
rate.

Another source of error is the ambiguity of
terms used in the text to refer to parts of the virus
that are also names of proteins such as “capsid”.
Although the frequently-named capsid protein is
the main constituent of the viral capsid, references
in the text to “capsid” are often ambiguous as to
whether they refer to the protein or to the assem-
bled virus part. The annotation guidelines state
that such terms should only be tagged if they re-
fer to the protein and should not be tagged if they
refer to part of the virus, but these cases are often
difficult to distinguish in practice.

The tagger identifies false positives at a much
lower rate than false negatives. Since very short
protein names are present in the dictionary, it is
much more likely for these names to appear in
places that are not in the context of a protein. For
example, Coronavirus infectious bronchitis virus
has a spike protein abbreviated S, however discus-
sion of the polyprotein cleavage site before a ser-
ine residue will be false positively tagged as serine
is also abbreviated S.

Normalization of protein names to multiple en-
tities can also be incorrect in instances where an
abstract discusses both a specific protein in one
species, and the same protein in many species. The
tagger will tag all instances of the protein name
with all species and will not be able to distinguish
the instances that refer only to the protein in a spe-
cific species, whereas human annotators are more
easily able to distinguish these cases.

4.4 Results in other corpora

Compared to the S800 virus corpus (Pafilis et al.,
2013), the improved dictionary finds over 100
more mentions, including new abbreviations, but
does not tag more general terms such as “infec-
tious virus” and “avian viruses” which refer to
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Precision | Recall

Normalisation 77.5% 35.5%
Boundaries only 87.4% | 40.0%
Doc level normalisation 77.1% 50.7%
Theoretical max recall - 75.2%

Table 2: Summary of results for protein detec-
tion for different evaluation criteria: normalization
and recognition, recognition of boundaries only
and document level normalization. The theoretical
maximum recall based on requiring the species to
be recognized and present in the dictionary is also
listed.

more than one species. Measured against the S800
gold standard for only virus annotations in the
virus subset of the corpus, the improved tagger
has a precision and recall of 63.3% and 57.0%
respectively, compared to the initial results from
SPECIES of 63.2% and 53.0% respectively.

Running the tagger over all of Medline finds
over 53 million mentions of 8063 viral species
in more than 1.5M articles. Of these, we have
protein level detail for 348 species, and find over
10M mentions of 4668 unique proteins. The most
commonly mentioned species is HIV-1, making up
over 3% of species mentions.

5 Conclusions and Perspectives

As the biomedical literature continues to grow at
an exponential rate (Lu, 2011), automated tools,
such as text mining, are necessary to enable ex-
tracting information from the literature in a timely
and efficient manner. Text mining is a means to
automatically extract information from the litera-
ture without requiring manual curation of a large
number of documents. It can be used success-
fully to extract virus species and proteins from ab-
stracts that pertain to viruses with good precision
and also, in the case of species, good recall. There
is still much room to improve the recall of pro-
teins due to the abundance of alternative names
that are used to refer to them. Further, the tag-
ger does not recognize disjoint entities, and since
there has recently been progress in this field (Tang
et al., 2013), this could also be an area for future
improvement of the tagger.

These results can be used in future work to ex-
tract co-occurrences of virus and host proteins,
which could imply an interaction between these
proteins. Integrating virus-host protein-protein in-



teractions into the larger host interaction network
may provide insight into viral mechanisms of dis-
ease. Work done specifically on EBV, HPV, and
Hepatitis C virus (Gulbahce et al., 2012; Mosca
et al., 2014) revealed that host proteins local to vi-
ral targets form network modules that are related
to the diseases caused by these viruses. With the
virus-agnostic tools presented here, such work can
be scaled up to easily enable investigation of all
viruses for which there is sufficient data.

The work presented here could also be used as
a foundation to identify viruses that are understud-
ied compared to their impact, and may reveal fu-
ture directions that are promising to study. The
interrelationship of proteins and diseases has been
explored recently using text mining to assess both
the strength of an interaction between a protein
and a disease, and also the scarceness of publica-
tions about a given protein target (Cannon et al.,
2017). This gives researchers an overview of un-
derstudied proteins that could be relevant for dis-
ease etiology. A similar approach could be taken
to reveal new directions in virus research.
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Abstract

We propose in this paper a semi-
supervised method for labeling terms of
texts with concepts of a domain ontology.
The method generates continuous vector
representations of complex terms in a se-
mantic space structured by the ontology.
The proposed method relies on a distribu-
tional semantics approach, which gener-
ates initial vectors for each of the extracted
terms. Then these vectors are embedded in
the vector space constructed from the
structure of the ontology. This embedding
is carried out by training a linear model.
Finally, we apply a cosine similarity to de-
termine the proximity between vectors of
terms and vectors of concepts and thus to
assign ontology labels to terms. We have
evaluated the quality of these representa-
tions for a normalization task by using the
concepts of an ontology as semantic la-
bels. Normalization of terms is an im-
portant step to extract a part of the infor-
mation contained in texts, but the vector
space generated might find other applica-
tions. The performance of this method is
comparable to that of the state of the art
for this task of standardization, opening up
encouraging prospects.

Introduction

A lot of biomedical or biological knowledge is
in a non-structured form, such as that expressed
in scientific articles (Kang et al., 2013). For ex-
perts from these fields, the substantial increase in
the specialized literature has created a significant
need for automatic methods of information ex-
traction (Ananiadou and McNaught, 2006). The
task of normalization is one of the main tasks to
respond to this need.

Normalization consists in standardizing terms
(single- or multi-word) extracted from texts by
linking them to non-ambiguous references, such
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as entries from existing knowledge bases. Con-
cepts from an ontology can be used to represent
these references in a formal and structured way.
Term and their relationships carry a lot of the
knowledge contained in texts, thus successful
term identification is a key to getting access to
the information (Krauthammer and Nenadic,
2004).

Standardization encounters several difficulties,
such as the significant variability of the form of
the terms, whether they are represented by one
word (e.g. “child” / “kid” or “accommodation” /
“home”, etc.) or by several (e.g. “child” / "little
boy” or “accommodation” / “dwelling place”,
etc.) (Nazarenko et al., 2006). Multiword terms,
which have varied morphosyntactic structures
and complex imbrications (mainly complex noun
phrases), are particularly difficult to normalize
(e.g. only with a different syntactic organization:
“breast cancer” / “cancer of the breast”). In the
literature, such as scientific articles in life sci-
ences, complex noun groups are abundant (Ma-
niez, 2007). An approach based on the similarity
of form between term and semantic label appears
limited to perform this task (Golik et al., 2011),
because the form of the labels of the concepts is
not necessarily close to the form of the terms to
be annotated. Another difficulty arises from the
large number of ontology concepts, making a su-
pervised classification approach costly in manual
annotation (e.g. over 2,000 categories for exam-
ple in the ontology of bacterial habitats OntoBi-
otope (Bossy et al., 2015)).

An alternative approach is to calculate the se-
mantic proximity between terms by distributional
semantics. It is an approach based on the correla-
tion between the similarity of meaning and the
distribution similarity of semantic units (word,
combination of words, sentence, documents, ...)
(Firth, 1957; Harris, 1954). A semantic unit can
then be represented by a vector: it is constructed
from the context information in which the se-
mantic unit is found. The proximity of vectors in
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this space can be transposed to a semantic prox-
imity (Fabre and Lenci, 2015). Today, there are
many methods for generating such vector spaces,
such as Word2Vec (Mikolov et al., 2013), but
they usually focus on massive data sets (Fabre et
al., 2014) in which information is often repeated.

The question is: how to use distributional se-
mantics to normalize terms by an ontology? In
other words how to relate distributional infor-
mation to the categories of ontology? In the con-
text of specialized literature, we often deal with
relatively small corpora and a large number of
semantic categories.

We propose an original method in which we
represent complex terms based on word embed-
ding, embed the ontology in a vector space, and
learn a transformation from term vectors to con-
cept vectors. Then, this transformation is used to
determine the most suitable concept for an input
term.

2 Material

The data used are those of the Bacteria Biotope
categorization task (Task 3) of the 2016 BioNLP
Shared Task (Deléger et al., 2016). The documents
are references from MEDLINE, composed of ti-
tles and abstracts of scientific articles in the field
of biology. The task consists in assigning a cate-
gory from the OntoBiotope ontology to given cor-
pus terms related to bacterial habitats. The corpus
is divided into three subparts: the training corpus,
the development corpus and the test corpus. In the
training and development corpus, the categories of
terms are given: they have been used to train our
method. The terms from the test corpus are those
which categories have to be predicted: it is the
corpus used to evaluate our method for the task of
normalization. The entities of each of these corpo-
ra have been manually annotated. Table 1 pro-

vides a summary of their characteristics:
Train Dev. Test Total

Documents 71 36 54 161
Words 16,295 | 8,890 | 13,797 | 38,982
Entities 747 454 720 1,921
Distinct 476 267 478 1,125
entities

Semantic cat. 825 535 861 2,221
Distinct cat. 210 122 177 329

Table 1: Descriptive statistics for the Bacteria Bi-
otope corpus (“cat.” = categories, “Dev.” = devel-
opment corpus)

In addition to this corpus, an extended corpus
of the same domain is used to generate vector
representations of each word. It is composed of
approximately 100,000 sentences (4,800,000
words) from titles and abstracts of scientific arti-
cles in the field of biology available on PubMed.
This represents a relatively small size corpus,
which contains a majority of words with a low
frequency of occurrence (cf. Table 2). Other cor-
pus, larger and/or more general could be used,
also direct words embedding as the one released
by BioASQ (Pavlopoulos et al., 2014). Neverthe-
less, the very accurate domain of the used ex-
tended corpus and its desired small size seemed
to be more adapted.

Repeated >2 72,412 | 35%
Repeated 2 times 31,569 | 15%
Not repeated 105,364 | 50%
Words (without stopwords) | 209,345 | 100%

Table 2: Descriptive statistics of extended corpus

3 Method
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Figure 1: A. Process to create word vectors.
B. Process to create term vectors.

3.1 Word vectors

The vector space of the terms (VST) is ob-
tained by generating a vector for each word of
the extended corpus and the Bacteria Biotope
corpus. For this, we used the Word2Vec tool
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(Mikolov et al., 2013), taking as context of a
word, a list containing all the words of their sen-
tence. To have enough training data for the gen-
eration of meaningful word vectors, and also to
avoid taking into account typos or errors, it is
usually advisable to use Word2Vec without the
infrequent words appearing only once or twice
throughout the corpus. But our corpus contains
many words of interest with a low frequency, so
we choose not to apply this frequency threshold.
After some performance tests, the dimension 200
was selected for the output vectors (cf. Figure
1A), which is of the same order of magnitude as
what is usually advised (Mikolov et al., 2013).

3.2 Term vectors

To compute the vector representations of the
multiword terms (cf. Figure 1B), segmenting
them into words is the first step. For each word,
which is not a stopword, the vector calculated by
Word2Vec is used. Then the vector of the multi-
word term is obtained by averaging the vectors of
the words which compose it:

M

where vy, is the associated vector of the term ¢,

ny is the number of words (without stopwords) of

the term ¢y, v,k is the vector of the word mk
13

n
Vy = Zi=kl vm{‘/nk

from our Word2Vec computation, and the term ¢;,

is such that :
vi € [1,n,],mf € t,

2

Even if it is not the aim of this paper, future
works could test other methods.

3.3 Concept vectors

,_,__l—l—_'_——‘__!—u-_‘_\
Onftology
— (OntoBiotope)
A 4
Concept vectorization [= = == = = = 1
|
R b
1
! Dimension reduction
S
1
) A 1

Concept vectors

Figure 2: Process to create concept vector
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To construct the concept vectors and thus a vec-
tor space of an ontology (VSO), null vectors with
as many dimensions as the number of concepts in
the ontology are initialized. Each value of the vec-
tor is thus related to one of the concepts of the on-
tology, which is set to 1 for the considered con-
cept. The value is also 1 if the current axis is relat-
ed to a concept which is an ancestor of the consid-
ered concept, and 0 otherwise:

(3)
where v, is the vector related to the concept ¢, n

is the number of concepts in the ontology and Wcik
is the value of vector v, for the axis i, such as:

Lifi=k
wcikz{

1,if c; parent of cy
0, otherwise
This representation has the advantage of pre-
serving the similarity arrangement (with cosine
distance) expected between the concepts (cf. Fig-
ure 3 and Table 3): a concept is more similar to
his children and his parents.

owl:Thing

'Concept 011" [ ‘Concept 021 l [ '‘Concept 022" l
Figure 3: Abstract ontology representation (dis-
played by Protégé)

— 0 i n
Ve, = ( Weps wos Weps e ch)

C)

Concept 02 Similarity
Concept 02 1,0000
Concept 021 0,8165
Concept 022 0,8165
Concept 0 0,7071
Concept 01 0,5000
Concept 011 0,4082

Table 3: Cosine distances between concepts of
an abstract ontology (cf. Figure 3)

We can notice that the dimension of the gener-
ated VSO is the number of concepts of the ontol-
ogy (e.g. more than 2,000 for the OntoBiotope on-
tology). It is a high dimension in comparison to
the VST but concept vectors are very sparse (with
a maximum of 13 non-zero values in a vector) and
they only contain binary values. Therefore, to
make them more comparable to term vectors, we
experimented with reducing the VSO to denser



representations in a lower-dimension space (cf.
Figure 2). Two methods have been tested: Princi-
pal Component Analysis (PCA) and Multi-
Dimensional Scaling (MDS).

3.4 Training with general linear model

Concept vectors Term vectors

Training

Prediction model
\..__‘__‘___________,__,f
Figure 4: Training process to determine a trans-

formation VST to VSO

The objective of the training step is to deter-
mine a transformation from VST to VSO, which
minimizes all the distances between the vectors of
terms resulting from this transformation and the
vectors of the associated concepts. In this paper, a
linear transformation is studied with the aim of
keeping a strong similarity between the distribu-
tion of term vectors in the VST and the distribu-
tion of the projections in the VSO. Indeed, a non-
linear transformation could strongly distort the re-
sulting distribution to fit better to training data.

This training aims to obtain the best parameters
to approximate this matrix equation:

Y=X.B+U (5)

where Y is a matrix resulting in a series of concept
vectors, X is a matrix resulting in a series of term
vectors (where the ith line of X is the vector of a
term which has for category a concept which has
for vector the ith line of Y), B is a matrix contain-
ing parameters that are usually to be estimated and
U is a matrix containing noise following a multi-
variate Gaussian distribution. This training is per-
formed on the training and development corpora
(cf. Figure 4).

The obtained matrix enables us to design a lin-
ear transformation function then make it possible
to predict new vectors associated with the terms of
the test corpus expressed in the VSO:

_ ( VST - VSO )
" \Vterm 2 Vierm = f (Werm)
where Vierm 18 @ vector of term in the VST and

V{erm 18 the resulting vector of the same term pro-
jected in the VSO. To satisfy the requirements of

(6)

the evaluation task, the concept vector nearest to
V{erm (as determined by cosine distance) is cho-
sen as category for the annotated term (cf. Figure
5).

—_—
fe A

Term vectors
_-———"_-’
T

Prediction

'

Distance similarity < Concept vectors

y
— T
e

Normalized terms

\___‘____—____,___./

Figure 5: Process of predicting semantic catego-
ries associated with extracted terms

L 3

Prediction model

3.5

We evaluate the performance of our normal-
ization method on the Bacteria Biotope normal-
ization task of the BioNLP Shared Task 2016. The
dataset was presented in Section 2. The predicted
concepts identifiers are compared to the gold
standard concepts according to the similarity
measure of (Wang et al., 2007), with the weight
parameter set to 0.65. The evaluation was per-
formed by submitting our results to the evaluation
server run at the BioNLP-ST 2016 challenge site.

Evaluation

4 Results

4.1 Normalization

Team Similarity score

BOUN 0.6200
CONTES 0.5968
LIMSI 0.4380
Baseline 0.3217

Table 4: Results on the normalization task of
BioNLP-ST 2016

We applied our concept normalization method
to the test dataset of the Bacteria Biotope 2017
Task 3. We computed baseline results by assigning
all terms to the concept "bacteria habitat", which
is the root of the OntoBiotope ontology hierarchy.
We also compared these results to those of the two
teams who participated in this task of BioNLP-ST
2016. We report all results in Table 4. The base-
line obtains a score of 0.3217. Our method
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(CONTES - CONcept-TErm System) obtained a
score of 59.68%, much higher than the baseline,
and close to that of the top team (Tiftikci et al.,
2016). This score is also significantly above the
method of LIMSI (Grouin, 2016), which is based
on a morphological approach.

4.2 Term vectors

In spite of the low frequency of occurrence of
the words of the extended corpus (cf. Table 2), the
resulting word vectors seem to have relatively sat-
isfactory proximities, from the point of view of
the semantic similarity of the associated terms.
Moreover, the method used to compute vectors for
complex terms also seems satisfactory, as illus-
trated Table 5.

cell Similarity
HCE cell 0.9999
13C-labeled cell 0.9998
parietal cell 0.9989
Schwann cell 0.9965
CD8+T cell 0.9770
PMN cell 0.9669
macrophage cell 0.9473

Table 5: Terms nearest to the term “cell”

It also appears that lexical variation can be
overcome (cf. Table 6 and Table 7), which was
one of the desired properties. Although more gen-
erally, it seems that terms with similar lexical
forms are closer (Table 5).

Nevertheless, the co-occurrence of some words
seems to cluster certain terms from different cate-
gories: two words appearing frequently in com-
mon contexts are then found close. This similarity
persists when calculating multiword term vectors.
This applies, for example, to the terms relating to
fish and those relating to fish farms (cf. Table 8).
These cases are less satisfactory because they do
not differentiate between terms which should be
annotated with different semantic categories (e.g.
“fish” and “healthy fish” should be annotated by
<OBT:001902: fish>, “fish farm” and “disease-free
fish farm” by <OBT:000295: fish farm> and “fish
farm sediments” by <OBT:000704: sediment>).

younger ones Similarity
children less than five years of age 0.8087
children less than 2 years of age 0.8060
children less than two years of age 0.7995

Table 6: Terms nearest to the term
‘younger ones’

seawater Similarity
sediments 0.7696
sediment sample from a disease-free
fish farm 0.7499
fish farm sediments 0.7342
subterranean brine 0.7320
lagoon on the outskirts of the city
of Cagliari 0.7128
petroleum reservoir 0.7095
marine environments 0.7077
marine bivalves 0.6896
sediment samples from diseased
farms 0.6870
urine sediments 0.6819
petroleum 0.6576
subterranean environment 0.6497
fresh water 0.6494
fresh water supply 0.6395
Seafood 0.6390
marine 0.6366

Table 7: Terms nearest to the term ‘seawater’

fish Similarity
fish farming 0.9875
fish farm 0.9170
disease-free fish farm 0.9124
fish farm sediments 0.8683
healthy fish 0.8145

Table 8: Terms nearest to the term ‘fish’

4.3 Concept vectors

<OBT:001922: algae> sans ACP Similarity
<OBT:001777: aquatic plant> 0.9258
<OBT:001895: submersed aquatic

plant> 0.8571
<OBT:001967: seaweed> 0.8018

Table 9: Concepts nearest to the concept
<OBT:001922: algae>

We can estimate the quality of the created con-
cept vectors by observing the consistency between
the proximity of two vectors and the similarity of
their meanings. Table 9 and Figure 6 show the
example of the 'algae' concept: the nearest neigh-
bors of its vector are its father in the ontology, its
sibling and the immediate descendant of its sib-
ling.
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Figure 6: Taxonomy of concepts around concept
"algae" (displayed by Protégé)

By comparing several examples, it seems that
PCA does not modify the order of proximity of
the concepts, but an increase in vector density can
be observed (cf. comparison between Table 9 and

250, the final scores appear to be relatively stable,
especially with CBOW. Similarly, the score dif-
ference between the two architectures remains be-
low 3%. Above a dimension of 250, there is a de-
crease in the score for the 2 architectures, with a
greater slope for CBOW.

4.5 Impact of a dimension reduction on the
VSO
0,6
o [ e e .
L] 0 sanT 05445 0,548
05 e B

Table 10).

<OBT:001922: algae> avec ACP Similarity
<OBT:001777: aquatic plant> 0.9990
<OBT:001895:  submersed aquatic

plant> 0.9982
<OBT:001967: seaweed> 0.9943
<OBT:000372: sponge> 0.9303
<OBT:000269: marine eukaryotic spe-

cies> 0.9303

Table 10: Concepts nearest to

the concept

<OBT:001922: algae> after a PCA with a final

dimension of 100

4.4

Final similarity
measure
0,61

Impact of the size of the VST

- 0,5968
0,6 Y
0 54 -
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Figure 7: Comparison between CBOW and
Skip-Gram architectures for the VST

Word2Vec allows the use of 2 different archi-
tectures to generate word vectors from a corpus:
Continuous Bag Of Words (CBOW) and Skip-
Gram. We tested the 2 architectures on different
output vector sizes (cf. Figure 7). For vector spac-
es generated with a dimension between 100 and

104

1000 1500 2000
WSO dimension

& Fina smilarity measure = = =Baz=elne

--------- Final similarity measur ewithout dimension reduction

Figure 8: Evolution of performance depending
on the final size of the VSO after reduction
(here with a VST with 100 dimensions)

The VSO has a large dimension compared to
the specific information that it contains (i.e. the
ontology structure). This may present combinato-
rial but also theoretical difficulties: a linear projec-
tion of the VST on the VSO (with a higher dimen-
sion than the VST) should then only be performed
on a subspace of the VSO. Thus, it theoretically
limits the results. It was therefore interesting to
study the impact of a reduction of the VSO size on
the final score. We can then observe that a reduc-
tion PCA (with similar results with MDS) system-
atically decreases the score obtained when using a
non-reduced VSO (cf. Figure 8).

Nevertheless, there is a level with relatively
high performance (less than 3% below the score
without reduction) which collapses below a cer-
tain dimension. This threshold might have a link
with the number of concepts that have at least 2
distinct parents.

5 Discussion

To extend the interpretations derived from ex-
amples, it would be interesting to evaluate the
overall quality of the generated vector spaces:

vector spaces of words, terms, concepts as well as
the final space containing the transformations of
the vectors of the terms. We plan to perform this
in further work.



One of the difficulties of the task is that in this
normalization task, a term can be annotated by
several distinct concepts of the ontology (e.g.
"school age children with wheezing illness"
should be annotated by the concept <OBT:
002307: pediatric patient> as well as the concept
<OBT: 002187: patient with disease>). This diffi-
culty is linked to the ontology of interest. In 2016,
all participating systems of the task skip this diffi-
culty, which is not anecdotal among the extracted
terms.

6 Future work

For future work, it would be relevant to apply
methods of global evaluation of the quality of the
generated vector spaces. In particular, this would
make it possible to evaluate the intermediate pro-
cesses more thoroughly and to observe the impact
of the modifications on their internal parameters
more precisely. New methods could then be con-
sidered to improve outcomes. For example, it
would certainly be positive to use a method of
vector representation of an ontology that would
generate a space with a smaller dimension while
retaining the possibility of discerning the initial
structure of the ontology. Similarly, the method
used here to generate the VST vectors could be
improved to take into account the syntactic con-
text of the terms. This could solve the semantic
similarity problems between "fish" and "fish
farm" (cf. Table 8).

In the Bacteria Biotope normalization task,
terms often have to be annotated with several con-
cepts of the target ontology (for example, "chil-
dren greater than 9 years of age who had lower
respiratory illness" should be annotated by the
concept <OBT: 002307: pediatric patient> and by
the concept <OBT: 002187: patient with dis-
ease>). Having a completely defined ontology
(i.e. containing all the concepts sufficient to anno-
tate uniquely each possible extracted term - for
example, a concept 'pediatric patient with disease'
which is a subset of <OBT: 002307: pediatric pa-
tient> and of <OBT: 002187: patient with dis-
ease>) should improve the results. If such ontolo-
gies seem to be relatively rare in the biological
domain, it might be interesting to start by auto-
matically generating all the concepts equivalent to
the intersection of the non-disjoint concepts to an-
swer this problem. Nevertheless, if the concepts
share many intersections between them or the dis-
joint property has not been formalized, the size of
the generated ontology may pose combinatorial
difficulties.

We addressed a task in which entities have al-
ready been detected in text. Since entity detection
and terminology extraction methods have relative-
ly acceptable performance, it would be useful to
use them to extend the current task to an end-to-
end concept detection and normalization system.

Finally, despite the inherent limitation of nor-
malization methods based on word form similari-
ty, these could nevertheless be used to carry out a
pre-normalization of the corpus. As a result, one
might consider using these annotations to drive
the training part of the method (cf. 3.4 Training
with general linear model) instead of using a manu-
al annotation (i.e. a test corpora). Thus, this would
transform this method into a fully unsupervised
method.

7 Conclusion

The aim of this article was to propose an ap-
proach for the creation of vector representations
for (complex or non-complex) terms in a semantic
space. In addition, it aimed to propose a method
capable of adapting to a small specialized corpus
where the interest terms appear with a relatively
low frequency. The most widely used methods
currently generate vector spaces which meaning is
difficult to interpret other than in terms of spatial
proximity / semantic similarity. Our method
seems to show that by combining relatively clas-
sical approaches, it is possible to use an ontology
to generate vectors in a more interpretable vector
space. The results are comparable to those of the
state of the art, which seems to open up encourag-
ing prospects. Beyond the standardization task,
new efficient methods of generating interpretable
vector spaces could apply to a number of further
tasks.
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Improving Correlation with Human Judgments
by Integrating Semantic Similarity with Second—-Order Vectors
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Abstract

Vector space methods that measure se-
mantic similarity and relatedness often
rely on distributional information such as
co—occurrence frequencies or statistical
measures of association to weight the im-
portance of particular co—occurrences. In
this paper, we extend these methods by
incorporating a measure of semantic sim-
ilarity based on a human curated taxon-
omy into a second—order vector represen-
tation. This results in a measure of seman-
tic relatedness that combines both the con-
textual information available in a corpus—
based vector space representation with the
semantic knowledge found in a biomedical
ontology. Our results show that incorpo-
rating semantic similarity into a second or-
der co—occurrence matrices improves cor-
relation with human judgments for both
similarity and relatedness, and that our
method compares favorably to various dif-
ferent word embedding methods that have
recently been evaluated on the same refer-
ence standards we have used.

1 Introduction

Measures of semantic similarity and relatedness
quantify the degree to which two concepts are
similar (e.g., lung—heart) or related (e.g., lung—
bronchitis). Semantic similarity can be viewed
as a special case of semantic relatedness — to be
similar is one of many ways that a pair of con-
cepts may be related. The automated discovery
of groups of semantically similar or related terms
is critical to improving the retrieval (Rada et al.,
1989) and clustering (Lin et al., 2007) of biomed-
ical and clinical documents, and the development
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of biomedical terminologies and ontologies (Bo-
denreider and Burgun, 2004).

There is a long history in using distributional
methods to discover semantic similarity and re-
latedness (e.g., (Lin and Pantel, 2002; Reisinger
and Mooney, 2010; Radinsky et al., 2011; Yih and
Qazvinian, 2012)). These methods are all based on
the distributional hypothesis, which holds that two
terms that are distributionally similar (i.e., used in
the same context) will also be semantically similar
(Harris, 1954; Weeds et al., 2004). Recently word
embedding techniques such as word2vec (Mikolov
et al., 2013) have become very popular. Despite
the prominent role that neural networks play in
many of these approaches, at their core they re-
main distributional techniques that typically start
with a word by word co—occurrence matrix, much
like many of the more traditional approaches.

However, despite these successes distributional
methods do not perform well when data is very
sparse (which is common). One possible solu-
tion is to use second—order co—occurrence vec-
tors (Schiitze, 1992; Schiitze, 1998). In this ap-
proach the similarity between two words is not
strictly based on their co—occurrence frequencies,
but rather on the frequencies of the other words
which occur with both of them (i.e., second order
co—occurrences). This approach has been shown
to be successful in quantifying semantic related-
ness (Islam and Inkpen, 2006; Pedersen et al.,
2007). However, while more robust in the face of
sparsity, second—order methods can result in sig-
nificant amounts of noise, where contextual infor-
mation that is overly general is included and does
not contribute to quantifying the semantic related-
ness between the two concepts.

Our goal then is to discover methods that auto-
matically reduce the amount of noise in a second—
order co—occurrence vector. We achieve this by
incorporating pairwise semantic similarity scores
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derived from a taxonomy into our second-—order
vectors, and then using these scores to select
only the most semantically similar co—occurrences
(thereby reducing noise).

We evaluate our method on two datasets that
have been annotated in multiple ways. One has
been annotated for both similarity and relatedness,
and the other has been annotated for relatedness
by two different types of experts (medical doctors
and medical coders). Our results show that in-
tegrating second order co—occurrences with mea-
sures of semantic similarity increases correlation
with our human reference standards. We also com-
pare our result to a number of other studies which
have applied various word embedding methods to
the same reference standards we have used. We
find that our method often performs at a compara-
ble or higher level than these approaches. These
results suggest that our methods of integrating se-
mantic similarity and relatedness values have the
potential to improve performance of purely distri-
butional methods.

2 Similarity and Relatedness Measures

This section describes the similarity and related-
ness measures we integrate in our second—order
co—occurrence vectors. We use two taxonomies in
this study, SNOMED-CT and MeSH. SNOMED-
CT (Systematized Nomenclature of Medicine Clin-
ical Terms) is a comprehensive clinical terminol-
ogy created for the electronic representation of
clinical health information. MeSH (Medical Sub-
Jject Headings) is a taxonomy of biomedical terms
developed for indexing biomedical journal arti-
cles.

We obtain SNOMED-CT and MeSH via
the Unified Medical Language System (UMLS)
Metathesaurus (version 2016AA). The Metathe-
saurus contains approximately 2 million biomed-
ical and clinical concepts from over 150 different
terminologies that have been semi—automatically
integrated into a single source. Concepts in
the Metathesaurus are connected largely by two
types of hierarchical relations: parent/child
(PAR/CHD) and broader/narrower (RB/RN).

2.1 Similarity Measures

Measures of semantic similarity can be classified
into three broad categories : path—based, feature—
based and information content (IC). Path—based
similarity measures use the structure of a taxon-
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omy to measure similarity — concepts positioned
close to each other are more similar than those
further apart. Feature—based methods rely on set
theoretic measures of overlap between features
(union and intersection). The information content
measures quantify the amount of information that
a concept provides — more specific concepts have
a higher amount of information content.

2.1.1 Path-based Measures

Rada et al. (1989) introduce the Conceptual Dis-
tance measure. This measure is simply the length
of the shortest path between two concepts (c1 and
c2) in the MeSH hierarchy. Paths are based on
broader than (RB) and narrower than (RN) rela-
tions. Caviedes and Cimino (2004) extends this
measure to use parent (PAR) and child (CHD) re-
lations. Our path measure is simply the recipro-
cal of this shortest path value (Equation 1), so that
larger values (approaching 1) indicate a high de-
gree of similarity.

1

spath(cy, c2) M

path =

While the simplicity of path is appealing, it can
be misleading when concepts are at different lev-
els of specificity. Two very general concepts may
have the same path length as two very specific con-
cepts. Wu and Palmer (1994) introduce a correc-
tion to path that incorporates the depth of the con-
cepts, and the depth of their Least Common Sub-
sumer (LCS). This is the most specific ancestor
two concepts share. In this measure, similarity is
twice the depth of the two concept’s LCS divided
by the product of the depths of the individual con-
cepts (Equation 2). Note that if there are multiple
LCSs for a pair of concepts, the deepest of them is
used in this measure.

oy — 2 x depth(les(c1, o))
P= depth(cy) + depth(cs)

Zhong et al. (2002) take a very similar approach
and again scale the depth of the LCS by the sum of
the depths of the two concepts (Equation 3), where
m(c) = k~4Ph()  The value of k was set to 2
based on their recommendations.

2

2xm(les(cr, e2))
m(c1) + m(ca)
Pekar and Staab (2002) offer another variation

on path, where the shortest path of the two con-
cepts to the LCS is used, in addition to the shortest

3)

zhong =



bath between the LCS and the root of the taxon-
omy (Equation 4).

spath(les(cy, c2), root)

Z30101,62,7‘0075 Spath(lCS(Ch CQ), l‘)
4)

pks = — log

2.1.2 Feature-based Measures

Feature—based methods represent each concept as
a set of features and then measure the overlap or
sharing of features to measure similarity. In par-
ticular, each concept is represented as the set of
their ancestors, and similarity is a ratio of the in-
tersection and union of these features.

Maedche and Staab (2001) quantify the similar-
ity between two concepts as the ratio of the inter-
section over their union as shown in Equation 5.

[A(e1) N A(e2)]
[A(er) U Aez)]

Batet et al. (2011) extend this by excluding any
shared features (in the numerator) as shown in
Equation 6.

cmatch =

(&)

[A(er) UA(e2)| = |A(er) N Alea)]

batet = —loga(

[Aer) U Alea)|

2.1.3 Information Content Measures

Information content is formally defined as the neg-
ative log of the probability of a concept. The effect
of this is to assign rare (low probability) concepts
a high measure of information content, since the
underlying assumption is that more specific con-
cepts are less frequently used than more common
ones.

Resnik (1995) modified this notion of informa-
tion content in order to use it as a similarity mea-
sure. He defines the similarity of two concepts
to be the information content of their LCS (Equa-
tion 7).

res = IC(les(cr, c2) = —log(P(les(er, c2)))
(7
Jiang and Conrath (1997), Lin (1998), and Pirr6é
and Euzenat (2010) extend res by incorporating
the information content of the individual concepts
in various different ways. Lin (1998) defines the
similarity between two concepts as the ratio of in-
formation content of the LCS with the sum of the
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individual concept’s information content (Equa-
tion 8). Note that /in has the same form as wup
and zhong, and is in effect using information con-
tent as a measure of specificity (rather than depth).
If there is more than one possible LCS, the LCS
with the greatest IC is chosen.

lin — 2% IC(les(er,c2))
N IC(Cl) —i—IC(Cg)

Jiang and Conrath (1997) define the distance be-
tween two concepts to be the sum of the infor-
mation content of the two concepts minus twice
the information content of the concepts’ LCS. We
modify this from a distance to a similarity mea-
sure by taking the reciprocal of the distance (Equa-
tion 9). Note that the denominator of jcn is very
similar to the numerator of batet.

®)

1
IC(c1) + IC(c2) =2+ IC(les(eq,c2))
©)

jen =

Pirr6 and Euzenat (2010) define the similar-
ity between two concepts as the information con-
tent of the two concept’s LCS divided by the sum
of their individual information content values mi-
nus the information content of their LCS (Equa-
tion 10). Note that batet can be viewed as a set—
theoretic version of faith.

IC(les(eq,c2))

faith = IC(c1) + IC(c2) — IC(ZCS(CLCQ()%

0)

2.2 Information Content

The information content of a concept may be de-
rived from a corpus (corpus—based) or directly
from a taxonomy (intrinsic—based). In this work
we focus on corpus—based techniques.

For corpus—based information content, we esti-
mate the probability of a concept ¢ by taking the
sum of the probability of the concept P(c) and the
probability its descendants P(d) (Equation 11).

D

dedescendant(c)

P(ex) = P(c) + P(d) (11)

The initial probabilities of a concept (P(c)) and
its descendants (P(d)) are obtained by dividing
the number of times each concept and descendant
occurs in the corpus, and dividing that by the total
numbers of concepts (V).



Ideally the corpus from which we are estimating
the probabilities of concepts will be sense—tagged.
However, sense—tagging is a challenging problem
in its own right, and it is not always possible to
carry out reliably on larger amounts of text. In fact
in this paper we did not use any sense—tagging of
the corpus we derived information content from.

Instead, we estimated the probability of a con-
cept by using the UMLSonMedline dataset. This
was created by the National Library of Medicine
and consists of concepts from the 2009AB UMLS
and the counts of the number of times they oc-
curred in a snapshot of Medline taken on 12 Jan-
uary, 2009. These counts were obtained by using
the Essie Search Engine (Ide et al., 2007) which
queried Medline with normalized strings from the
2009AB MRCONSO table in the UMLS. The fre-
quency of a CUI was obtained by aggregating the
frequency counts of the terms associated with the
CUI to provide a rough estimate of its frequency.
The information content measures then use this in-
formation to calculate the probability of a concept.

Another alternative is the use of Intrinsic In-
formation Content. It assess the informativeness
of concept based on its placement within a tax-
onomy by considering the number of incoming
(ancestors) relative to outgoing (descendant) links
(Sanchez et al., 2011) (Equation 12).

|leaves(c)|
[subsumers(c)|

max_leaves + 1

+1

IC(c) = —log( ) (12)

where leaves are the number of descendants of
concept c that are leaf nodes, subsumers are the
number of concept c’s ancestors and max_leaves
are the total number of leaf nodes in the taxonomy.

2.3 Relatedness Measures

Lesk (1986) observed that concepts that are related
should share more words in their respective defi-
nitions than concepts that are less connected. He
was able to perform word sense disambiguation by
identifying the senses of words in a sentence with
the largest number of overlaps between their defi-
nitions. An overlap is the longest sequence of one
or more consecutive words that occur in both def-
initions. Banerjee and Pedersen (2003) extended
this idea to WordNet, but observed that WordNet
glosses are often very short, and did not contain
enough information to distinguish between mul-
tiple concepts. Therefore, they created a super—
gloss for each concept by adding the glosses of
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related concepts to the gloss of the concept itself
(and then finding overlaps).

Patwardhan and Pedersen (2006) adapted this
measure to second—order co—occurrence vectors.
In this approach, a vector is created for each word
in a concept’s definition that shows which words
co—occur with it in a corpus. These word vec-
tors are averaged to create a single co-occurrence
vector for the concept. The similarity between
the concepts is calculated by taking the cosine
between the concepts second—order vectors. Liu
et al. (2012) modified and extended this measure
to be used to quantify the relatedness between
biomedical and clinical terms in the UMLS. The
work in this paper can be seen as a further exten-
sion of Patwardhan and Pedersen (2006) and Liu
et al. (2012).

3 Method

In this section, we describe our second—order simi-
larity vector measure. This incorporates both con-
textual information using the term pair’s defini-
tion and their pairwise semantic similarity scores
derived from a taxonomy. There are two stages
to our approach. First, a co—occurrence matrix
must be constructed. Second, this matrix is used
to construct a second—order co—occurrence vector
for each concept in a pair of concepts to be mea-
sured for relatedness.

3.1 Co-occurrence Matrix Construction

We build an m xn similarity matrix using an exter-
nal corpus where the rows and columns represent
words within the corpus and the element contains
the similarity score between the row word and col-
umn word using the similarity measures discussed
above. If a word maps to more than one possi-
ble sense, we use the sense that returns the highest
similarity score.

For this paper our external corpus was the NLM
2015 Medline baseline. Medline is a biblio-
graphic database containing over 23 million ci-
tations to journal articles in the biomedical do-
main and is maintained by National Library of
Medicine. The 2015 Medline Baseline encom-
passes approximately 5,600 journals starting from
1948 and contains 23,343,329 citations, of which
2,579,239 contain abstracts. In this work, we use
Medline titles and abstracts from 1975 to present
day. Prior to 1975, only 2% of the citations con-
tained an abstract. We then calculate the similarity



for each bigram in this dataset and include those
that have a similarity score greater than a specified
threshold on these experiments.

3.2 Measure Term Pairs for Relatedness

We obtain definitions for each of the two terms we
wish to measure. Due to the sparsity and incon-
sistencies of the definitions in the UMLS, we not
only use the definition of the term (CUI) but also
include the definition of its related concepts. This
follows the method proposed by Patwardhan and
Pedersen (2006) for general English and Word-
Net, and which was adapted for the UMLS and the
medical domain by Liu et al. (2012). In particular
we add the definitions of any concepts connected
via a parent (PAR), child (CHD), RB (broader
than), RN (narrower than) or TERM (terms asso-
ciated with CUI) relation. All of the definitions for
a term are combined into a single super—gloss. At
the end of this process we should have two super—
glosses, one for each term to be measured for re-
latedness.
Next, we process each super—gloss as follows:

1. We extract a first—order co—occurrence vector
for each term in the super—gloss from the co—
occurrence matrix created previously.

We take the average of the first order co—
occurrence vectors associated with the terms
in a super—gloss and use that to represent the
meaning of the term. This is a second—order
co—occurrence vector.

. After a second—order co—occurrence vector
has been constructed for each term, then we
calculate the cosine between these two vec-
tors to measure the relatedness of the terms.

4 Data

We use two reference standards to evaluate the
semantic similarity and relatedness measures .
UMNSRS was annotated for both similarity and
relatedness by medical residents. MiniMayoSRS
was annotated for relatedness by medical doctors
(MD) and medical coders (coder). In this section,
we describe these data sets and describe a few of
their differences.

MiniMayoSRS: The MayoSRS, developed by
Pakhomov et al. (2011), consists of 101 clinical
term pairs whose relatedness was determined by

'http://www.people.vcu.edu/ btmcinnes/downloads.html
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nine medical coders and three physicians from
the Mayo Clinic. The relatedness of each term
pair was assessed based on a four point scale:
(4.0) practically synonymous, (3.0) related, (2.0)
marginally related and (1.0) unrelated. Mini-
MayoSRS is a subset of the MayoSRS and con-
sists of 30 term pairs on which a higher inter—
annotator agreement was achieved. The average
correlation between physicians is 0.68. The av-
erage correlation between medical coders is 0.78.
We evaluate our method on the mean of the physi-
cian scores, and the mean of the coders scores in
this subset in the same manner as reported by Ped-
ersen et al. (2007).

UMNSRS: The University of Minnesota Se-
mantic Relatedness Set (UMNSRS) was devel-
oped by Pakhomov et al. (2010), and consists of
725 clinical term pairs whose semantic similarity
and relatedness was determined independently by
four medical residents from the University of Min-
nesota Medical School. The similarity and relat-
edness of each term pair was annotated based on a
continuous scale by having the resident touch a bar
on a touch sensitive computer screen to indicate
the degree of similarity or relatedness. The Intr-
aclass Correlation Coefficient (ICC) for the refer-
ence standard tagged for similarity was 0.47, and
0.50 for relatedness. Therefore, as suggested by
Pakhomov and colleagues,we use a subset of the
ratings consisting of 401 pairs for the similarity
set and 430 pairs for the relatedness set which each
have an ICC of 0.73.

5 Experimental Framework

We conducted our experiments using the
freely available open source software package
UMLS::Similarity (Mclnnes et al., 2009) version
1.47>. This package takes as input two terms
(or UMLS concepts) and returns their similarity
or relatedness using the measures discussed in
Section 2.

Correlation between the similarity measures
and human judgments were estimated using Spear-
man’s Rank Correlation (p). Spearman’s measures
the statistical dependence between two variables
to assess how well the relationship between the
rankings of the variables can be described using a
monotonic function. We used Fisher’s r-to-z trans-
formation (Fisher, 1915) to calculate the signifi-
cance between the correlation results.

*http://search.cpan.org/edist/UMLS-Similarity/



6 Results and Discussion

Table 1 shows the Spearman’s Rank Correlation
between the human scores from the four reference
standards and the scores from the various mea-
sures of similarity introduced in Section 2. Each
class of measure is followed by the scores obtained
when integrating our second order vector approach
with these measures of semantic similarity.

6.1 Results Comparison

The results for UMNSRS tagged for similarity
(stm) and MiniMayoSRS tagged by coders show
that all of the second-order similarity vector mea-
sures (Integrated) except for vector-jcn obtain a
higher correlation than the original measures. We
found that vector-res and wector-faith obtain
the highest correlations of all these results with hu-
man judgments.

For the UMNSRS dataset tagged for relatedness
and MiniMayoSRS tagged by physicians (MD),
the original vector measure obtains a higher cor-
relation than our measure (Integrated) although
the difference is not statistically significant (p <
0.2).

In order to analyze and better understand these
results, we filtered the bigram pairs used to create
the initial similarity matrix based on the strength
of their similarity using the faith and the res
measures. Note that the faith measure holds to
a 0 to 1 scale, while res ranges from 0 to an un-
specified upper bound that is dependent on the size
of the corpus from which information content is
estimated. As such we use a different range of
threshold values for each measure. We discuss the
results of this filtering below.

6.2 Thresholding Experiments

Table 2 shows the results of applying the threshold
parameter on each of the reference standards using
the res measure. For example, a threshold of 0
indicates that all of the bigrams were included in
the similarity matrix; and a threshold of 1 indicates
that only the bigram pairs with a similarity score
greater than one were included.

These results show that using a threshold cutoff
of 2 obtains the highest correlation for the UMN-
SRS dataset, and that a threshold cutoff of 4 ob-
tains the highest correlation for the MiniMayoSRS
dataset. All of the results show an increase in
correlation with human judgments when incorpo-
rating a threshold cutoff over all of the original
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Table 1: Spearman’s Correlation Results

UMNSRS | MiniMayoSRS
Resident | MD  Coder
sim  rel relatedness
Path
path 0.52 0.28 | 0.35 0.45
wup 0.50 0.24 | 0.39 0.51
pks 0.49 0.25 | 0.38 0.50
zhong 0.50 0.25 | 042 0.50
Integrated
vector-path 0.60 043 | 0.54 0.54
vector-wup 0.60 0.42 | 0.55 0.55
vector-pks 0.60 042 | 0.53 0.53
vector-zhong | 0.58 0.41 | 0.54 0.53
Feature
batet 0.16 0.33 | 0.16 0.15
cmatch 0.33 0.17 | 0.35 0.35
Integrated
vector-batet 0.59 043 | 0.53 0.51
vector-cmatch | 0.60 0.43 | 0.54 0.55
IC
res 049 0.26 | 0.36 0.47
lin 0.51 0.29 | 0.44 0.54
jen 0.52 033|042 0.52
faith 0.51 0.29 | 043 0.54
Integrated
vector-res 0.57 041 | 0.58 0.65
vector-lin 0.57 041 | 0.59 0.64
vector-jcn 042 0.15] 0.26 0.41
vector-faith 0.59 042 | 0.58 0.63
Intrinsic IC
ires 0.49 0.26 | 040 0.50
ilin 0.50 0.28 | 0.41 0.50
ijcn 0.51 0.29 | 0.39 0.50
ifaith 0.50 0.28 | 0.41 0.50
Integrated
vector-ires 0.57 041 | 0.50 0.52
vector-ilin 0.57 041 ] 0.55 0.59
vector-ijcn 0.50 041 | 0.54 0.54
vector-ifaith 0.58 042 | 0.58 0.64
Relatedness
lesk 0.49 0.33 | 0.52 0.56
olvector 047 036|043 0.54
o2vector 0.54 045 | 0.63 0.59




Table 2: Threshold Correlation with vector-res

UMNSRS | MiniMayoSRS
T | #bigrams | sim rel | MD  coder
0 850,959 | 0.58 0.41 | 0.58 0.65
1 166,003 | 0.56 0.39 | 0.60  0.67
2 65,502 | 0.64 0.47 | 0.56  0.62
3 27,744 1 0.60 0.46 | 0.62  0.71
4 10,991 | 0.56 0.43 | 0.75  0.76
5 3,305 |1 026 0.16 | 036  0.36

Table 3: Threshold Correlation with vector- faith

# | UMNSRS | MiniMayoSRS

T | bigrams | sim rel | MD  coder

0 | 838,353 059 042|058  0.63
0.1 197,189 | 0.58 041|057  0.63
0.2 | 121,839 | 0.58 0.41 | 0.58  0.63
03] 71,353 | 0.63 046|054 055
04| 45335]064 048|050 0.51
05| 29,734 |1 0.66 049 | 049 053
0.6 | 19,347 | 0.65 049 | 052  0.56
0.7 11,946 | 0.64 0.48 | 0.53 0.55
0.8 7,349 | 0.64 0.49 | 0.53 0.56
0.9 4,731 | 0.62 0.49 | 0.53 0.57

measures. The increase in the correlation for the
UMNSRS tagged for similarity is statistically sig-
nificant (p < 0.05), however this is not the case
for the UMNSRS tagged for relatedness nor for
the MiniMayoSRS data.

Similarly, Table 3 shows the results of apply-
ing the threshold parameter (T) on each of the ref-
erence standards using the faith measure. Al-
though, unlike res whose scores are greater than
or equal to O without an upper limit, the faith
measure returns scores between 0 and 1 (inclu-
sive). Therefore, here a threshold of 0 indicates
that all of the bigrams were included in the sim-
ilarity matrix; and a threshold of 0.1 indicates
that only the bigram pairs with a similarity score
greater than 0.1 were included. The results show
an increase in accuracy for all of the datasets
except for the MiniMayoSRS tagged for physi-
cians. The increase in the results for the UMNSRS
tagged for similarity and the MayoSRS is statisti-
cally significant (p < 0.05). This is not the case
for the UMNSRS tagged for relatedness nor the
MiniMayoSRS.

Overall, these results indicate that including
only those bigrams that have a sufficiently high
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similarity score increases the correlation results
with human judgments, but what quantifies as suf-
ficiently high varies depending on the dataset and
measure.

6.3 Comparison with Previous Work

Recently, word embeddings (Mikolov et al., 2013)
have become a popular method for measuring se-
mantic relatedness in the biomedical domain. This
is a neural network based approach that learns a
representation of a word by word co—occurrence
matrix. The basic idea is that the neural net-
work learns a series of weights (the hidden layer
within the neural network) that either maximizes
the probability of a word given its context, referred
to as the continuous bag of words (CBOW) ap-
proach, or that maximizes the probability of the
context given a word, referred to as the Skip—gram
approach. These approaches have been used in nu-
merous recent papers.

Muneeb et al. (2015) trained both the Skip—
gram and CBOW models over the PubMed Cen-
tral Open Access (PMC) corpus of approximately
1.25 million articles. They evaluated the models
on a subset of the UMNSRS data, removing word
pairs that did not occur in their training corpus
more than ten times. Chiu et al. (2016) evaluated
both the the Skip—gram and CBOW models over
the PMC corpus and PubMed. They also evaluated
the models on a subset of the UMNSRS ignoring
those words that did not appear in their training
corpus. Pakhomov et al. (2016) trained CBOW
model over three different types of corpora: clin-
ical (clinical notes from the Fairview Health Sys-
tem), biomedical (PMC corpus), and general En-
glish (Wikipedia). They evaluated their method
using a subset of the UMNSRS restricting to sin-
gle word term pairs and removing those not found
within their training corpus. Sajadi et al. (2015)
trained the Skip—gram model over CUIs identified
by MetaMap on the OHSUMED corpus, a collec-
tion of 348,566 biomedical research articles. They
evaluated the method on the complete UMNSRS,
MiniMayoSRS and the MayoSRS datasets; any
subset information about the dataset was not ex-
plicitly stated therefore we believe a direct com-
parison may be possible.

In addition, a previous work very closely related
to ours is a retrofitting vector method proposed by
Yu et al. (2016) that incorporates ontological in-
formation into a vector representation by includ-



Table 4: Comparison with Previous Work

Method UMNSRS MayoSRS MiniMayoSRS
Subsets Full (N=101) (N=29)
sim rel sim (N=566) rel (N=587) rel MD coder avg
vector-res (ours) 0.64 (N=401) 0.49 (N=430) 0.59 0.48 0.51 0.75 0.76 0.76
vector—faith (ours) 0.66 (N=401) 0.49 (N=430) 0.61 0.49 0.46 0.58 0.63 0.63
Yu et al., 2016) 0.70  0.67
(Sajadi et al., 2015) 0.39 0.39 0.63 0.8

(Pakhomov et al., 2016) | 0.62 (N=449) 0.58 (N=458)
(Muneeb et al., 2015) | 0.52 (N=462) 0.45 (N=465)
(Chiu et al., 2016) 0.65 (N=UK) 0.60 (N=UK)

ing semantically related words. In their measure,
they first map a biomedical term to MeSH terms,
and second build a word vector based on the doc-
uments assigned to the respective MeSH term.
They then retrofit the vector by including seman-
tically related words found in the Unified Medical
Language System. They evaluate their method on
the MiniMayoSRS dataset.

Table 4 shows a comparison to the top corre-
lation scores reported by each of these works on
the respective datasets (or subsets) they evaluated
their methods on. N refers to the number of term
pairs in the dataset the authors report they eval-
uated their method. The table also includes our
top scoring results: the integrated vector-res and
vector-faith. The results show that integrating se-
mantic similarity measures into second—order co—
occurrence vectors obtains a higher or on—par cor-
relation with human judgments as the previous
works reported results with the exception of the
UMNSRS rel dataset. The results reported by
Pakhomov et al. (2016) and Chiu et al. (2016) ob-
tain a higher correlation although the results can
not be directly compared because both works used
different subsets of the term pairs from the UMN-
SRS dataset.

7 Conclusion and Future Work

We have presented a method for quantifying the
similarity and relatedness between two terms that
integrates pair—wise similarity scores into second—
order vectors. The goal of this approach is two—
fold. First, we restrict the context used by the
vector measure to words that exist in the biomed-
ical domain, and second, we apply larger weights
to those word pairs that are more similar to each
other. Our hypothesis was that this combination
would reduce the amount of noise in the vectors
and therefore increase their correlation with hu-
man judgments. We evaluated our method on

datasets that have been manually annotated for
relatedness and similarity and found evidence to
support this hypothesis. In particular we dis-
covered that guiding the creation of a second-
order context vector by selecting term pairs from
biomedical text based on their semantic similarity
led to improved levels of correlation with human
judgment.

We also explored using a threshold cutoff to in-
clude only those term pairs that obtained a suf-
ficiently large level of similarity. We found that
eliminating less similar pairs improved the over-
all results (to a point). In the future, we plan
to explore metrics to automatically determine the
threshold cutoff appropriate for a given dataset and
measure. We also plan to explore additional fea-
tures that can be integrated with a second—order
vector measure that will reduce the noise but still
provide sufficient information to quantify related-
ness. We are particularly interested in approaches
that learn word, phrase, and sentence embeddings
from structured corpora such as literature (Hill
et al., 2016a) and dictionary entries (Hill et al.,
2016b). Such embeddings could be integrated into
a second—order vector or be used on their own.

Finally, we compared our proposed method
to other distributional approaches, focusing on
those that used word embeddings. Our results
showed that integrating semantic similarity mea-
sures into second—order co—occurrence vectors ob-
tains the same or higher correlation with human
judgments as do various different word embed-
ding approaches. However, a direct comparison
was not possible due to variations in the subsets
of the UMNSRS evaluation dataset used. In the
future, we would not only like to conduct a direct
comparison but also explore integrating semantic
similarity into various kinds of word embeddings
by training on pair—wise values of semantic simi-
larity as well as co—occurrence statistics.
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Abstract

The goal of active learning is to minimise
the cost of producing an annotated dataset,
in which annotators are assumed to be per-
fect, i.e., they always choose the correct la-
bels. However, in practice, annotators are
not infallible, and they are likely to assign
incorrect labels to some instances. Proac-
tive learning is a generalisation of active
learning that can model different kinds of
annotators. Although proactive learning
has been applied to certain labelling tasks,
such as text classification, there is little
work on its application to named entity
(NE) tagging. In this paper, we propose
a proactive learning method for produc-
ing NE annotated corpora, using two an-
notators with different levels of expertise,
and who charge different amounts based
on their levels of experience. To opti-
mise both cost and annotation quality, we
also propose a mechanism to present mul-
tiple sentences to annotators at each itera-
tion. Experimental results for several cor-
pora show that our method facilitates the
construction of high-quality NE labelled
datasets at minimal cost.

1 Introduction

Manually annotating a dataset with NEs is both
time-consuming and costly. Active learning, a
semi-supervised machine learning algorithm, aims
to address such issues (Lewis, 1995; Settles,
2010). Instead of asking annotators to label the
whole dataset, active learning methods present
only representative and informative instances to
annotators. Through iterative application of this
process, a high-quality annotated corpus can be
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produced in less time and at lower cost than tra-
ditional annotation methods.

There are two strong assumptions in active
learning: (1) instances are labelled by experts,
who always produce correct annotations and are
not affected by the tedious and repetitive nature
of the task; (2) all annotators are paid equally, re-
gardless of their annotation quality or level of ex-
pertise. However, in practice, it is highly unlikely
that all annotators will assign accurate labels all
of the time. For example, especially for complex
annotation tasks, some labels are likely to be as-
signed incorrectly (Donmez and Carbonell, 2008,
2010; Settles, 2010). Furthermore, if annotation is
carried out for long periods of time, tiredness and
reduced concentration may ensue (Settles, 2010),
which can lead to annotation errors. An additional
issue is that different annotators may have varying
levels of expertise, which could make them reluc-
tant to annotate certain cases, and they may assign
incorrect labels in other cases. It is also possible
that an inexperienced annotator may assign ran-
dom labels.

To address the above-mentioned assumptions,
proactive learning has been proposed to model dif-
ferent types of experts (Donmez and Carbonell,
2008, 2010). Proactive learning assumes that (1)
not all annotators are perfect, but that there is
at least one “perfect” expert and one less expe-
rienced or “fallible” annotator; (2) as the perfect
expert always provides correct answers, their time
is more expensive than that of the fallible annota-
tor. The annotation process in proactive learning
is similar to traditional active learning. At each
iteration, annotators will be asked to tag an unla-
belled instance, the result of which will be added
to the labelled dataset. However, the difference
with proactive learning is that, in order to reduce
annotation cost, an appropriate annotator is cho-
sen to label each selected instance. For example, if
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there is a high probability that the fallible annota-
tor will provide the correct label for an unlabelled
instance, then proactive learning will send this in-
stance to be annotated by fallible annotator. This
aims to ensure a simultaneous saving of costs and
maintenance of the quality of the data.

Proactive learning has been used for several
annotation tasks, such as binary and multi-class
text classification, and parsing (Donmez and Car-
bonell, 2008, 2010; Olsson, 2009). In contrast,
this paper proposes a proactive learning method
for NE tagging, i.e., a sequence labelling task.

Similarly to other efforts that have used proac-
tive learning, our method models two annotators:
a reliable one and a fallible one, who have differ-
ent probabilities of providing correct labels. The
reliable annotator is much more likely to produce
correct annotations, but their time is expensive.
In contrast, the fallible annotator is likely to as-
sign incorrect annotations more often, but charges
less for their services. It should be noted that the
characteristics of our reliable expert are different
from those proposed in previous work (Donmez
and Carbonell, 2008, 2010). Specifically, in the
conventional proactive learning, the reliable ex-
pert is assumed to be perfect, i.e., he/she always
provides correct annotations. However, in prac-
tice, such an assumption is too strong, especially
for NE annotation. Therefore, we assume that the
reliable expert is not perfect, but that he/she has
a higher expertise level in the target domain, and
has a very low error rate. In order to determine an
appropriate annotator for each sentence, we cal-
culate the probability that an annotator will assign
the correct sequence of labels in a selected unla-
belled sentence. Furthermore, at each iteration, we
use a batch sampling mechanism to select several
sentences for annotators to label (instead of select-
ing only a single sentence), which optimises both
cost and performance.

For evaluation purposes, we simulate the two
annotators by using two machine-learning based
NER methods, namely LSTM-CRF (Lample et al.,
2016) as the reliable expert, and CRF (Lafferty
et al., 2001) as the fallible expert. We then ap-
ply our method to three corpora from different do-
mains: ACE2005 (Walker et al., 2006) for general
language entities, COPIOUS—an in-house corpus
of biodiversity entities!, and GENIA (Kim et al.,
2003)—a corpus of biomedical entities. Our ex-

"The corpus is available upon request.
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perimental results demonstrate that by using the
proposed method, we can obtain a high-quality la-
belled corpus at a lower cost than current baseline
methods.

The contributions of our work are as follows.
Firstly, we have modified the conventional proac-
tive learning method to ensure its suitability for
a sequence labelling task. Secondly, in con-
trast to previous work, which selects a single in-
stance for each annotator at each iteration (Don-
mez and Carbonell, 2008, 2010; Moon and Car-
bonell, 2014), our method selects multiple sen-
tences for presentation to annotators. Thirdly, by
applying our method to a number of different cor-
pora, we demonstrate that our method is general-
isable to different domains.

2 Methodology

The proposed proactive learning for NE tagging
is outlined in Algorithm 1. As an initial step,
the performance of each expert is estimated based
on a benchmark dataset (see Section 2.1). Sub-
sequently, at each iteration, all sentences in the
unlabelled dataset are sorted according to an ac-
tive learning criterion. The top-/N most informa-
tive sentences are then used as input to the batch
sampling step. In this step, a batch of sentences
is divided into two sets to be distributed to the re-
liable and fallible experts, respectively. Sentences
distributed to the fallible experts are not only infor-
mative, but there is also a high probability that the
expert will provide correct labels for them. Mean-
while, only those sentences that are estimated to
be too difficult for the fallible expert to annotate
will be sent to the reliable expert. By applying
this process, annotation cost can be reduced. Fur-
ther details about the batch sampling algorithm are
presented in Section 2.2.

In Algorithm 1, UL, is the set of selected un-
labelled sentences assigned to the reliable expert
and U Ly is the set assigned to the fallible expert.
Ly, Ly are the annotated results of UL, U L.

2.1 Expert performance estimation

As mentioned above, our method assumes that
there are two types of experts. One is reliable,
who has a higher probability of assigning the cor-
rect sequence of labels for a sentence, and has
a high cost for their time. The other expert is
fallible, meaning that they may assign a higher
proportion of incorrect labels for a sequence, but



Algorithm 1: Proactive Learning for NER

Algorithm 2: Batch Sampling

Input: a labelled dataset L, an unlabelled dataset U L, a
test dataset 7', a budget B, a reliable expert e,
with cost C,- for each sentence, a fallible expert
ey with cost C'y, the current cost C

Output: a labelled dataset L

Estimate the performance of each expert as described in

Section 2.1;

while C' < B do

Train a named entity recognition model M on L;

Sort all sentences in the unlabelled dataset

according to an active learning criterion;

Select the top N sentences;

UL, ULy =

BatchSampling(M,top N sentences);

Ly,Ly < e, and ey annotate UL, and ULy

respectively;

L=LUL,ULy;

UL=UL-UL, —-ULy;

C=CH+Crx|L|+Cy x|Lg¢l;

1

end

charges less for their time. The likely anno-
tation quality of each expert is estimated based
on two different probabilities: the class probabil-
ity, p(label|expert, c) and the sentence probabil-
ity p(CorrectLabels|expert, x).

2.1.1 Class probability

The class probability, p(labellexpert,c), is the
probability that an expert provides a correct la-
bel when annotating a named entity of class c.
This probability is obtained by asking both the re-
liable and fallible experts to annotate a benchmark
dataset and calculating F} scores for each of them
against the gold standard annotations.

2.1.2 Sentence probability

The sentence probability is the probability that an
expert provides a sequence of correct labels for a
sentence .

We firstly compute the probability for each to-
ken in the sentence by combining the class proba-
bility and the likelihood that an expert provides a
correct label for the token x;, as shown in Equa-
tion 1. The equation is inspired by Moon and Car-
bonell (2014), who used it for a classification task.

p(CorrectLabel|expert, x;)
IC]
Zp(c|mi) x p(label|expert,c) (1)
C
C is the set of all entity labels and the label O.
p(c|x;) is the probability that a token ; is an
entity of class ¢, which is predicted by an NER
model.
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Input: a named entity recognition model M, top-INV
sentences selected according to an active
learning criterion

Output: UL,, ULy

ULT = @,

UL f= @;

while Batch Size do

// Stage 1

foreach sentence x do

if p(CorrectLabels| fallible, ) > « then
UL; =UL;U {:L‘},
BatchSize = BatchSize - 1

end

end

// Stage 2

if Batch Size # 0 then

Sort the remaining sentences according to a

re-ranking criterion;

Calculate threshold 5;

foreach sentence x do

if Batch Size # 0 then

if dif f(reliable, fallible,x) <
then

16 | ULy =ULjU{x};

else

18 |

end
BatchSize = BatchSize - 1;
end

e ® N u R

UL, =UL, U{z};

end

end
end

Given the probabilities that an expert will pro-
vide correct labels for each tokens in a sentence,
the sentence probability is calculated by averag-
ing all of these probabilities, as presented in Equa-
tion 2.

p(CorrectLabels|expert, ) =

Z?‘ p(Correct Label|expert, x;)
||

2

|| is the length of the sentence x.

2.2 Batch sampling

Instead of asking annotators to label only one sen-
tence at each iteration, it is more efficient to ask
them to annotate several sentences. To facilitate
this, we propose a batch sampling algorithm that
can select a set of sentences and assign them to
appropriate annotators (see Algorithm 2).

The input of the algorithm is a set of sentences
in the unlabelled dataset that are considered to
be the most informative ones, based on an active
learning criterion (as described in line 5 of Algo-
rithm 1).



This batch sampling process is divided into two
stages. In the first stage, unlabelled sentences for
which the sentence probability for the fallible ex-
pert is higher than a threshold «, will be assigned
to the fallible expert. Otherwise, the sentence
will be passed to the second stage. In the second
stage, we firstly reorder sentences according to a
re-ranking criterion, as shown in Equation 3. The
intuition behind this re-ranking step is that in order
to save on annotation costs, we set a high priority
for sentences to be assigned to the fallible expert
in certain cases. Specifically, for sentences that are
informative and for which there is a small differ-
ence between the sentence probabilities for the re-
liable and fallible experts, we favour the selection
of the fallible one.

ReRankingCriterion =
ActiveLearningCriterion(x)

dif f (reliable, fallible, x)

For an unlabelled sentence x, the difference be-
tween the sentence probabilities for the two ex-
perts is calculated as shown in Equation 4.

3)

dif f(reliable, fallible, x)
= |p(CorrectLabels|reliable, x)

— p(CorrectLabels| fallible, x)| (4)

If the above difference is not significant, i.e., it is
less than a threshold 3, x will be distributed to the
fallible expert. Otherwise, = will be assigned to
the reliable expert.

Equations (5) - (7) describe the estimation of
the threshold 3, in which ¢ is the i* sentence in
the top-N sentences selected by an active learn-
ing criterion. <y is a parameter that controls the
value of the threshold 3. 7 ranges from O to 1. If
~v = 0, no sentences will be given to the fallible ex-
pert to annotate. If v = 1, the fallible expert will
label all the BatchS'ize sentences. It should be
noted that 3 is a dynamic threshold, which is recal-
culated based on the difference between di f frqx
and di f f,nin at each iteration.

dif frmin = minl (dif f (reliable, fallible, z*))
(5)

dif fraz = mava(dz’ff(reliable, fallible, x"))
(6)

ﬁ = dszmm + V(diffmax - dszmm) (7)
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3 Experiments

3.1 Dataset

We have applied our method to three different cor-
pora: (1) ACE2005 (Walker et al., 2006) which in-
cludes named entities for the general domain, e.g.,
person, location, and organisation; (2) COPIOUS
that includes five categories of biodiversity enti-
ties, such as taxon, habitat, and geographical loca-
tion; (3) GENIA (Kim et al., 2003), a biomedical
named entity corpus.

Table 1 shows the entity classes and the number
of entities of each class that are annotated in the
three corpora. As shown in the table, for the GE-
NIA corpus, we combined the DNA and RNA en-
tities into a single named entity class. Meanwhile,
for ACE2005, although top-level entity classes are
divided into a number of different subtypes, we
only considered the top-level classes, as shown in
the table.

For active and proactive learning experiments,
1% and 20% of sentences of each corpus were
used as the initial labelled set and the test set, re-
spectively. The remaining 79% of sentences were
regarded as unlabelled data.

3.2 Expert simulation

We simulated the reliable and fallible experts
by using two machine learning models: LSTM-
CRF (Lample et al., 2016)—a neural network
NER and CRF (Lafferty et al., 2001). To evaluate
the performance of the two models, we conducted
preliminary experiments, by firstly trained the two
models on 80% of the labelled corpora and subse-
quently testing them on the remaining 20% of the
data.

Word embeddings As the three corpora belong
to three different domains, we used three corre-
sponding pre-trained word embeddings as input to
the LSTM-CRF model.

e ACE2005: GoogleNews vectors?, which in-
clude approximately 100 billion words.

e COPIOUS: we applied word2vec to the En-
glish subset of the Biodiversity Heritage Li-
brary® to learn vectors for biodiversity enti-
ties. The set has approximately 26 million
pages with more than 8 billion words.

Zhttp://code.google.com/archive/p/word2vec/
*http://www.biodiversitylibrary.org/



Corpus Entity Labelled | Unlabelled | Test | Total
Person (PER) 291 22853 5179 | 28323
Organization (ORG) 36 4554 690 5280
Geo-Political Entity (GPE) 21 5813 1360 | 7194

ACE2005 | Location (LOC) 7 760 168 935
Facility (FAC) 5 1136 227 1368
Weapon (WEA) 8 609 178 795
Vehicle (VEH) 7 640 123 770
Habitat 23 619 366 1008
Taxon 116 4485 1728 | 6329

COPIOUS | Person 24 768 258 1050
Geographical Location (GeoLoc) | 42 4373 1942 | 6357
Temporal Expression (TempExp) | 20 904 358 1282
DNA&RNA 88 6592 1757 | 8437

GENIA Cell 133 9623 2437 | 12193
Protein 316 24940 6402 | 31658

Table 1: Statistic information of the three corpora

o GENIA: word vectors trained on a combina-
tion of PubMed, PMC and English Wikipedia
texts (Pyysalo et al., 2013).

CREF features To train the CRF model, we used
CRF++* and employed following features: word
base, lemma, part-of-speech tag and chunk tag of a
token. We also used unigram and bigram features
that combine the features of the previous, current
and following token.

As illustrated in Table 2, the LSTM-CRF model
is mostly more precise and achieves wider cover-
age than CRF. We therefore selected LSTM-CRF
to simulate the reliable expert and CRF to simulate
the fallible expert.

Corpus CRF LSTM-CRF
Pre. | Re. F1 Pre. | Re. F1
ACE2005 | 73.89 | 65.07 | 69.20 | 75.69 | 74.11 | 74.89
COPIOUS | 81.01 | 48.58 | 60.74 | 77.18 | 74.77 | 75.96
GENIA 73.90 | 64.52 | 68.89 | 75.41 | 73.91 | 74.66

Table 2: Performance of CRF and LSTM-CRF on
the three corpora

The reliable expert (the LSTM-CRF model) was
trained on 80% of the labelled data, while the falli-
ble one (the CRF model) was trained on 60%. The
Fy scores of the reliable and fallible experts when
applied to the test dataset are presented in Table 3.

Corpus Fallible | Reliable
ACE2005 | 61.19 74.89
COPIOUS | 50.92 75.96
GENIA 57.67 74.66

Table 3: F7 scores of each expert on the three cor-
pora

*https://taku910.github.io/crfpp/
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The class probability of each expert is pre-
calculated based on the the F} score of each class
that an expert can achieve on the 1% initial la-
belled set. Meanwhile, the sentence probability of
each expert is estimated at each iteration.

3.3 Active learning criteria

Various active learning criteria were investigated
using the three corpora. We firstly estimated
the performance (F; score) of a supervised NER
model by using CRF++ and the above-mentioned
features. We then compared the performance of
each active learning criterion with that of the su-
pervised model. If the performance of one crite-
rion approximates that of the supervised with the
least number of iterations, we consider the crite-
rion as the best one for proactive learning experi-
ments.

We experimented with the following criteria:
least confidence (Culotta and McCallum, 2005),
normalized entropy (Kim et al., 2006), MMR
(Maximal Marginal Relevance) (Kim et al., 2006),
density (Settles and Craven, 2008) when using fea-
ture vectors and word embeddings, and the com-
bination of least confidence and density criterion.
Equation 8 describes the combination criterion
used in our experiments. In this equation, UL is
the current unlabelled dataset, * is the u'" un-
labelled sentence in U L, the parameter A = 0.8,
and the similarity score (Settles and Craven, 2008)
were calculated by using feature vectors.

x* = arg max(\ x Least_Con fidence(x)

|UL|
Z similarity(x,z")) (8)
u=1

+(1-X) UL



Corpus Entity Class Best Criterion
PER Density (w2v)
ORG Density (f2v)
GPE Entropy
LOC Least Confidence
ACE2005 FAC Longest
WEA MMR
VEH Longest
(Overall) Entropy
Habitat Density (f2v)
Taxon Entropy
Person Density (f2v)
COPIOUS GeoLoc Entropy
TempExp Least Confidence
(Overall) Entropy
Protein Entropy
Cell LC+Density (f2v)
GENIA | pNA&RNA Entropy
(Overall) Entropy

Table 4: The best active learning criteria on the
three corpora

We also implemented two baseline criteria. The
first one is random selection, in which a batch of
sentences is selected randomly at each iteration.
The second one, namely [ongest, is a criterion that
selects the longest sentences to be labelled.

Among these criteria, we selected the best crite-
rion for further experiments. The best criterion is
the one that produced competitive or better perfor-
mance (F-score) than that of a supervised learn-
ing method with the least number of training in-
stances. We report these criteria for each entity
class as well as for the overall corpus in Table 4.
In this table, Density (f2v) and Density (w2v) rep-
resent the density criteria when using feature and
word vectors, respectively. Entropy is the normal-
ized entropy. LC+Density is the combined crite-
rion, described in Equation 8. As shown in the
table, the best criteria at the level of individual
classes are diverse. However, overall, normalized
entropy is the best criterion for all three corpora.
We therefore selected this criterion in our proac-
tive learning experiments.

3.4 Proactive learning results

Our method was evaluated on the test datasets of
the three corpora mentioned in Section 3.1. For
all experiments with proactive learning, we used
the following settings: o = 0.975, v = 0.05,
N = 200, and the annotation costs are 3 and 1
per sentence for the reliable and fallible experts,
respectively.
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3.4.1 BaitchSize

We investigated different values of BatchSize
including 20, 10, 5, and 1. The results when
BatchSize is 1 was not shown in Figure 1 as our
method always selects the fallible expert at ev-
ery iteration, which results in a performance that
is inferior to the baselines. For the GENIA cor-
pus, the F-scores are comparable, regardless of the
BatchSize used. Meanwhile, for the ACE2005
corpus, the F-scores are the highest when the batch
size is 20. In contrast, for the COPIOUS corpus,
the best scores are obtained with a batch size of
10.

3.4.2 Comparison with baselines

Figure 2 compares the experimental results of the
two baseline methods (Reliable and Fallible) and
the best performance of the proposed proactive
learning method (P A) with batch sizes of 20, 10,
and 5, respectively, on the three corpora. Reliable
refers to a baseline in which we only select the re-
liable expert at each iteration. Similarly, only the
fallible expert was selected in the F'allible exper-
iments.

It can be seen that the performance of the three
models is comparable between ACE2005 and the
COPIOUS corpus. For these two corpora, PA
outperformed the two baselines. In most cases,
by using PA, better F-scores are obtained at the
same cost as the two baselines. Both PA and
Reliable performance is increased when the to-
tal cost is increased. Meanwhile, for the F'allible
model, the performance stabilises at a lower level
than the other methods when cost rises above a
certain level.

Regarding the GENIA corpus, PA acheived a
higher performance than Reliable, but a lower
performance than Fallible in the range of costs
from 0 to approximately 3,500. This can be partly
explained by the fact that there are only three NE
classes in this corpus. Hence, the annotation task
is simpler than for the the other corpora, even for
the fallible expert. However, when the cost is
greater than 3,500, the performance of Fallible
becomes stable, while the performance of PA
continues to increase.

We also investigated the number of times that
each expert was selected during the iterative pro-
cess of PA. The results are shown in Figure 3.
PA (Reliable) and PA (Fallible) correspond to
number of times that the reliable and fallible ex-
pert respectively, were selected in PA, while



Figure 1: Pro-active learning results on the three corpora when using different BatchSize
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Figure 2: The best pro-active learning results on the three corpora in comparison to the baselines
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Reliable corresponds to the number of times that
the reliable expert was selected in Reliable base-
line experiment. The figure illustrates that the
number of times that the fallible expert is selected
grows continually as the number of iterations in-
creases. This shows that our method can effec-
tively distribute appropriate unlabelled sentences
to the fallible expert, in order to save on annota-
tion costs.

4 Related work

4.1 Active learning for NER

Active learning aims to decrease annotation cost,
whilst maintaining acceptable quality of annotated
data. To achieve this, the method iteratively se-
lects the most informative sentences to be anno-
tated from an unlabelled data set.

One of the most common selection criteria used
in applying active learning to the task of NE la-
belling is the uncertainty-based criterion. This cri-
terion assumes that the most uncertain sentence

T T T
2000 3000 4000

Total Cost

T T T T
1000 1500 0 1000

Total Cost

is the most useful instance for learning an NER
model. There are several ways to implement this,
such as least confidence (Culotta and McCallum,
2005)—the lower the probability of a sequence of
labels, the less confidence the model, and en-
tropy (Kim et al., 2006) that can measure the un-
certainty of a probability distribution. Some other
criteria are a diversity measurement (Kim et al.,
2006) and a density criterion (Settles and Craven,
2008).

4.2 Cost-sensitive active learning

Cost-sensitive active learning is a type of active
learning method that considers the annotation cost,
e.g., budget, time or effort required to complete the
annotation process (Olsson, 2009). Since proac-
tive learning also models the reliability or exper-
tise of each annotator in addition to the annotation
cost, it can be considered as another case of cost-
sensitive active learning.

Donmez and Carbonell (2008, 2010) investi-
gated proactive learning for binary classification.
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Figure 3: Number of times that each expert is selected in PA and Reliable models
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They predicted the probability that a reluctant or-
acle refuses to annotate an instance and the prob-
ability that a fallible oracle assigns a random la-
bel to an instance. Each oracle charges a dif-
ferent amount for their efforts. They also pro-
posed a model that assigns different costs to unla-
belled instances according to their annotation diffi-
culty. For the multi-class classification task, Moon
and Carbonell (2014) used the same approach but
they had multiple experts, each of whom is spe-
cialised for each class. Kapoor et al. (2007) pro-
posed a decision-theoretic method for the task of
voice mail classification. They defined a criterion
named “expected value-of-information” that com-
bines the misclassification risk with the labelling
cost.

Cost-sensitive active learning was also applied
to part-of-speech (POS) tagging (Haertel et al.,
2008). In this work, an hourly cost measurement
was determined and a linear regression model
was trained to predict the annotation cost. Hwa
(2000) aimed to reduce the manual effort for a
parsing task by using tree entropy cost. Mean-
while, Baldridge and Osborne (2004) measured
the total annotation cost to create a treebank by
using unit cost and discriminant cost.

5 Conclusion and future work

Our work constitutes the first attempt to use proac-
tive learning method for named entity labelling.
We simulated the behaviour of reliable and fal-
lible experts having different levels of expertise
and different costs. To save annotation costs and
to ensure acceptable quality of the resulting an-
notated data, the method favours the selection of
the fallible expert. In order to increase efficiency,
we also proposed a batch sampling algorithm to
select more than one sentence in each iteration.

T
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Experimental results for three corpora belonging
to different domains demonstrate that the employ-
ment of non-perfect experts can help to build gold
standard dataset at reasonable cost. Moreover, our
method performed well across the three different
corpora, demonstrating the generality of our ap-
proach.

A potential limitation of our approach is that
the initial step is reliant on the availability of a
gold standard corpus to estimate the experts’ per-
formance. However, for some domains, it may be
difficult to obtain such a dataset. Therefore, as
future work, we will explore how we can assess
experts’ performance without the need for gold-
standard labelled data.

As a further extension to our work, we will
explore the deployment of our method on crowd
sourcing platforms, such as CrowdFlower’ and
Amazon Mechanical Turk®. These platforms al-
low annotations to be obtained from non-expert
annotators in a rapid and cost-effective man-
ner (Snow et al., 2008). These non-experts can be
treated as non-perfect annotators in our proposed
proactive learning method.
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Abstract

We propose a novel, Abstract Meaning
Representation (AMR) based approach to
identifying molecular events/interactions
in biomedical text. Our key contributions
are: (1) an empirical validation of our hy-
pothesis that an event is a subgraph of the
AMR graph, (2) a neural network-based
model that identifies such an event sub-
graph given an AMR, and (3) a distant su-
pervision based approach to gather addi-
tional training data. We evaluate our ap-
proach on the 2013 Genia Event Extrac-
tion dataset! (Kim et al., 2013) and show
promising results.

1 Introduction

For several years now, the biomedical community
has been working towards the goal of creating a
curated knowledge base of biomolecule entity in-
teractions. The scientific literature in the biomed-
ical domain runs to millions of articles and is an
excellent source of such information. However,
automatically extracting information from text is
a challenge because natural language allows us
to express the same information in several differ-
ent ways. The series of Genia Event Extraction
shared tasks (Kim et al., 2009, 2011, 2013, 2016)
has resulted in various significant approaches to
biomolecule event extraction spanning methods
that use learnt patterns from annotated text (Bui
et al., 2013) to machine learning methods (Bjorne
and Salakoski, 2013) that use syntactic parses as
features. In this work, we find that a semantic
analysis of text that relies on Abstract Meaning
Representations (Banarescu et al., 2013) is highly
useful because it normalizes many lexical and syn-
tactic variations in text.

!This dataset is different from BioNLP 2016 GE dataset

Figure 1: AMR with sample event annotations for
sentence “This LPA-induced rapid phosphoryla-
tion of radixin was significantly suppressed in the
presence of C3 toxin, a potent inhibitor of Rho”

AMR is a rooted, directed acyclic graph (DAG)
that captures the notion of who did what to whom
in text, in a way that sentences that have the same
basic meaning often have the same AMR. The
nodes in the graph (also called concepts) map to
words in the sentence and the edges map to re-
lations between the words. In the recent past,
there have been several efforts towards parsing
a sentence into its AMR (Flanigan et al., 2014;
Wang et al., 2015; Pust et al., 2015; May, 2016).
AMR naturally captures hierarchical relations be-
tween entities in text making it favorable for com-
plex event detection. For example, consider the
following sentence from the biomedical litera-
ture: “This LPA-induced rapid phosphorylation of
radixin was significantly suppressed in the pres-
ence of C3 toxin, a potent inhibitor of Rho”. Fig-
ure 1 shows its Abstract Meaning Representation
(AMR). The subgraph rooted at phosphorylate-01
identifies the event F; and the subgraph rooted at
induce-01 identifies the event F5y where

FE1 = phosphorylation of radixin;
FEy = LPA induces F1.

We hypothesize that an event structure is a sub-
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Type Primary Args.
Gene_expression T(P)
Transcription T(P)
Localization T(P)
Protein_catabolism T(P)
Binding T(P)+
Phosphorylation T(P/Ev), C(P/Ev)
Regulation T(P/Ev), C(P/Ev)
Positive_regulation T(P/Ev), C(P/Ev)
Negative_regulation ~ T(P/Ev), C(P/Ev)
Table 1: Event types and their arguments in the

2013 Genia Event Extraction task

graph of a DAG structure like AMR and under this
assumption, we cast the event extraction task as
a graph identification problem.  Our first con-
tribution is the testing of the above hypothesis
that an event structure is a subgraph of an AMR
graph. Given a sentence, we automatically obtain
its AMR using an AMR parser (Pust et al., 2015)
and explain how an event can be defined as a sub-
graph of the AMR graph. Under the assumption
that we can correctly identify such an event sub-
graph from an AMR graph when it exists, we eval-
uate how good is our definition (Section 2).

Our second contribution is a supervised neural
network-based model that is trained to identify an
event subgraph given an AMR (Section 3). Our
model is built on the intuition that the path be-
tween an interaction term and an entity term in an
AMR graph contains important signal for identify-
ing the relation between them. For e.g. in figure 1
the path { ‘induce-01", ‘arg0’, ‘LPA’} suggests that
LPA is the cause of induce. We encode this path
using word embeddings pre-trained on millions of
biomedical text and develop two pipelined neural
network models: (a) to identify the theme of an
interaction; and (b) to identify the cause of the in-
teraction, if there exists one.

Experimental results show that our model, al-
though achieves a reasonable precision, suffers
from low recall. Our third contribution is a dis-
tant supervision (Mintz et al., 2009) based ap-
proach to collect additional annotated training
data. Distant supervision works on the assump-
tion that given a known relation between two enti-
ties, a sentence containing the two entities is likely
to express this relation and hence can serve as
training data for that relation. Data gathered us-
ing such a method can be noisy (Takamatsu et al.,
2012). Roth et al. (2013) have discussed several
prior work that address this issue. In our work, we
introduce a method based on AMR path heuristic
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This LPA-induced rapid phosphorylation of radixin was sig-
nificantly suppressed in the presence of C3 toxin, a potent

inhibitor of Rho

T1  (Protein, LPA)

T2  (Protein, radixin)

T2  (Protein, C3)

T4  (Protein, Rho)

T5 (Phosphorylation, phosphorylate)
T6  (Positive_regulation, induce)

T7  (Negative_regulation, suppress)

T8  (Negative_regulation, inhibit)

El (Type: TS, Theme: T2)

E2  (Type: T6, Theme: El1, Cause: T1)
E3  (Type: T7, Theme: E1)

E4  (Type: T8, Theme: T4, Cause: T3)

Table 2: Example event annotation. The protein anno-
tations T1- T4 are given as starting points. The task is to
identify the events E1-E4 with their interaction type and ar-
guments.

to selectively sample the sentences we obtain us-
ing distant supervision (Section 3) and show its ef-
fectiveness over our vanilla neural network model.

We evaluate our event extraction model on the
2013 Genia Event Extraction dataset and show
that our model achieves promising results when
compared to the state-of-the-art system. Given
that AMR parsing is still a young field, our
model, which currently uses a parser of 67% ac-
curacy, would perform better with improved AMR
parsers.

2 AMR based event extraction model

2.1 Task description

The biomedical event extraction task in this work
is adopted from the Genia Event Extraction sub-
task of the well-known BioNLP shared task ((Kim
et al.,, 2009), (Kim et al., 2011), (Kim et al.,
2013)). Table 2 shows a sample event annotation
for the sentence in Figure 1. The protein anno-
tations T1- T4 are given as starting points. The
task is to identify the events E1-E4 with their inter-
action type and arguments. Table 1 describes the
various event types and the arguments they accept.
The first four event types require only unary theme
argument. The binding event can take a variable
number of theme arguments. The last four events
take a theme argument and, when expressed, also
a cause argument. Their theme or cause may in
turn be another event, creating a nested event (For
e.g. event E2 in Table 2).

2.2 Model description

We cast this event extraction problem as a sub-
graph identification problem. Given a sentence we



first obtain its AMR graph automatically using an
AMR parser (Pust et al., 2015). Next, we identify
protein nodes and interaction nodes in the graph.
Protein Node Identification: In both the training
and the test set, protein terms are pre-annotated
(e.g. T'1 to T'4 in Table 2). We then use the AMR
graph alignment information to identify nodes in
the AMR graph aligned to these protein terms to
get our protein nodes P.

Interaction Node Identification: In the training
data, interaction terms are pre-annotated (e.g. 175
to T8 in Table 2). To identify the interaction
terms in the test set we use the following heuristic:
any term that was annotated as an interaction term
more than once in the training data is considered
as an interaction term in the test data as well. We
then use the AMR graph alignment information to
identify nodes in the AMR graph aligned to the in-
teraction terms to get our interaction nodes 7.
Given P and 7', we identify an event sub-graph
using the following two-step process:

a. Theme Identification: Every pair (p;,t;)
where p; € P and t; € T, is a candidate for an
event e, defined as e,,: (Type: t;, Theme: p;)
where Type is one of the nine event types in Ta-
ble 1. If e, can take other events as arguments
(last four event types in Table 1) and if the short-
est path between ¢; and p; includes an interaction
term ¢, such that the pair (p;, t;) is an event e,
in itself, then we define the event ¢,, instead as
em: (Type: t;, Theme: e,). For e.g. in Figure 1,
the path between induce-01 and radixin includes
phosphorylate-01 which is an event in itself (F7).
Hence event F) is defined with F/q as its theme (in
Table 2).

b. Cause Identification: For events e,,: (Type:
t;: Theme: p;) that can take a cause argument,
we identify possible candidates for their cause by
again looking for all pairs (p;,t;) where p; € P
and [ # ¢ and add cause to the event e,, as e,,:
(Type: tj, Theme: p;, Cause: p;). Since these
events can even take other events as their cause
argument, we identify additional candidates for
their cause by looking for all pairs (e, t;) where
en € F and n # m and add cause to the event e,,
as ep, (Type: t;, Theme: p;, Cause: ey).

2.3 Upper bound using “event is a subgraph
of AMR’ hypothesis

Before we learn to identify event sub-graphs from
an AMR graph, we first calculate the upper bound

Event Type R P F1 F1()
Gene_expression 87.82  100.00 93.51
Transcription 65.31 100.00 79.01
Localization 86.80 100.00 92.93
Protein_catabolism ~ 90.00  100.00 94.74
==[SVT-TOTAL]== 82.48 100.00 90.04 76.59
Binding 67.83 9583 7943 4288
Phosphorylation 60.62  80.14 69.03 65.37
Regulation 42.61 61.73 50.42
Positive_regulation ~ 41.93 6543  51.11
Negative_regulation ~ 50.94  65.85 57.45
==[REG-TOTAL]== 45.16 6433 53.00 38.4l1
==[ALL-TOTAL]== 65.98 8544 74.18 50.97

Table 3: Upper bound on the dev set using our
“event is a subgraph of AMR” hypothesis

that we are setting for our model because we are
using an AMR parser instead of obtaining gold
AMRs. For calculating this upper bound, we first
obtain the AMR graph of a sentence using the
AMR parser and then assume that if an event is
a sub-graph of this AMR graph then we can iden-
tify it correctly. Table 3 shows the upper bound
we get on the dev set of the 2013 Genia Event Ex-
traction dataset (described in Section 5.1). The
last column in the table is the state-of-the-art F1
score obtained by the system EVEX (Hakala et al.,
2013) on the test set of the dataset?.

In case of simple events i.e. events that take
only proteins as theme arguments, an event is al-
ways a subgraph of the AMR unless there is an
alignment error causing the protein node or the
interaction node to be missing. Hence the upper
bound on our precision is 100% whereas the up-
per bound on our recall is 82.48% for these simple
events. In case of the other event types where an
event can take other events as arguments, an event
is correctly identified only if the path between the
pair (p;, t;) in the AMR graph includes all its sub-
events. Therefore we lose more on the precision
and recall in these cases due to AMR parsing er-
rors bringing our overall upper bound on precision
down to 85.44% and our overall upper bound on
recall down to 65.98%. These results give us fol-
lowing two important insights:

1. By using this hypothesis we have set an upper
bound of 74.18% F1-score for our learning
model.

2. As the accuracy of automatic AMR parsers
improve, our model will perform better at the
event extraction task.

2We compare our numbers on the dev set to the EVEX

numbers on test set since gold annotations for the test set are
not available for download



3 LSTM based learning model

In this section we will describe our model that
learns to identify an event sub-graph from an
AMR graph. The key idea is that the path between
the interaction node and the entity node (where the
term entity is used to denote both a protein and
a sub-event) contains information about how the
event is structured. We build on this idea to de-
velop a supervised model using Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) architecture that can learn to identify events
using the nodes and the edges in the AMR path
between the interaction term and the entity term.

3.1 Motivation

The input to our problem is a sequence of words
(w;) interwound with edge labels (e;) of the form:
wi, €1, Ws, €3, ..., n—1, Wy, that exists in the path
between an interaction node and an entity node
in an AMR graph. Due to large semantic varia-
tions that exist in naturally occurring texts, tradi-
tional feature based methods suffer from sparsity
issues while learning from such a sequence. Neu-
ral network based models provide a framework for
learning from non-sparse representations. Specifi-
cally, LSTM is known to handle sequences of vari-
able length and capture long range dependencies
well. Since the input sequence in our case falls
into this category, we build our model using the
LSTM framework.

3.2 Event identification

We model the event identification task as a two-
step process: Theme Identification and Cause
Identification. For simple events, this process in-
cludes only theme identification (since they don’t
have cause). We describe the two LSTM models
corresponding to the two steps as follows:

3.2.1 Theme Identification

Given a pair of interaction node (¢;) and protein
node (p;), the task is to identify if there exists
an event with ¢; as the interaction and p; as the
theme; and if yes, what is the type of the event.
We cast this problem as a multi-class classification
task with label set as L : {NULL U Event_types}
where Event_types correspond to the nine event
types described in Table 1 and NULL corresponds
to no event. We train an LSTM model for this
task with the input layer as the embeddings cor-
responding to the sequence of words interwound
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Theme identification
(multi-class classification)

Label: Positive_regulation

[‘induce-01', ‘argl’ ‘phosphorylate-01’, ‘argl’, radixin]

Label: Phosphorylation

['phosphorylate-01’, ‘'argl’, radixin]

Cause identification
(binary classification)

[‘LPA’, ‘arg0’, ‘induce-01’, ‘argl”
‘phosphorylate-01', ‘argl’, radixin]

Figure 2: Theme identification and Cause identi-
fication stages

with edge labels in the shortest path between p;
and t; in the AMR graph. We use a hidden layer
of size 100 and an output layer of the size of our
label set L. For e.g. in Figure 2, the sequence
{‘phosphorylate-01°, ‘argl’, ‘radixin’} is the in-
put sequence and the event type Phosphorylation
is its label.

3.2.2 Cause Identification

The last four event types in Table 1 can take pro-
teins or other events as cause argument. We cast
this problem as a binary classification task where
for an event we ask the question if a protein/event
is its cause argument or not for every protein and
every other event in that sentence. Let e,, be the
event identified as e, : (T'ype : tj, Theme : p;)
that can take a cause argument. Let C' = PU E
where P is the set of all other proteins in the AMR
graph (except p;) and E is the set of all identified
events (except e,,). For every ¢, € C, we get
the shortest path between ¢, and ¢; and combine
it with the shortest path between p; and ¢; and use
the words and edges in this combined path as the
input layer of our second LSTM model. We use
a hidden layer of size 100 and an output layer of
size one corresponding to the binary prediction of
whether ¢y, is the cause of the event e, or not.

3.3 Initialization of Embeddings

When initializing our model, we have two choices:
we can initialize the embeddings in the input layer
randomly or we can initialize them with values
that reflect the meanings of the word types. It
has been seen that using pre-defined word embed-
dings improves the performance of RNN models
over random initializations (Collobert and Weston,



2008; Socher et al., 2011). We initialize the vec-
tors corresponding to words in our input layer with
100-dimensional vectors generated by a word2vec
(Mikolov et al., 2013) model trained on over one
million words from the PubMed central article
repository. Words not included in the pre-trained
model and the edges are initialized randomly using
uniform sampling from [-0.25, +0.25] to match the
embedding standard deviation.

3.4 Event Construction

During test time, we first make predictions us-
ing our LSTM model for Theme identification.
For every pair (p;,t;) with a non-zero label [,
we construct events as follows: For label ! cor-
responding to interaction types that take only pro-
teins as theme arguments, we construct event as
em : (T'ype : tj, Theme : p;). For label [ corre-
sponding to interaction types that can take another
event as its theme, we look at the path between
t; and p; in the AMR. If this path includes a pair
(tg, p;) that has a non-zero label, then we construct
an event e, : (T'ype : t;, Theme : e,) where e, is
the event constructed from the pair (¢g, p;). Oth-
erwise, we construct the event as e, : (Type :
tj, Theme : p;).

For each of the predicted event e,, : (T'ype :
tj : Theme : p;) that can take a cause argument,
we run the second LSTM model for its Cause iden-
tification. If there is a pair (p;,c;) which has a
positive label, then we assign ¢ as the cause of
the event e,,,.

4 Distant Supervision

An empirical evaluation of our LSTM-based
learning model (Section 5.4) shows that it can suf-
fer from low recall. Obtaining additional human
annotated data for our complex event extraction
task can be very costly. This motivates us to de-
velop an approach that can gather more training
data with minimal supervision.

4.1 Motivation

Distant supervision as a learning paradigm was in-
troduced by Mintz et al. (2009) for relation extrac-
tion in general domain. They use Freebase to get
a set of relation instances and entity pairs partici-
pating in those relations, extract all sentences con-
taining those two entity pairs from Wikipedia text
and use these sentences as their training data. This
work and many others show that distant supervi-

BioPax database relations

Protein 1
DAG PKC

Protein 2 Relation

increases

Sentences extracted from PubMed Central articles

1. DAG is important for the activation of PKG, which phosphorylates
tyrosinase, and can also be released from melanocytes ...

2. ... are also affected by UVR to release membrane associated diacylglycerol

(DAG), which activates PKC.

3. ... activation may be mediated via both the AC/cAMP/PKA and PLC/IP3/
DAGidiacylglycerol)/PKC signaling pathways.

Figure 3: Distant Supervision: Sentences extracted from
PubMed Central articles using BioPax database relations

sion technique yields significant improvements in
relation extraction. Neural network models like
LSTM need to be trained on substantial amounts
of training data for them to be able to general-
ize well. However due to lack of labeled data in
biomedical domain, most work in relation extrac-
tion in this domain has been restricted to purely
supervised techniques. In this work we cope with
this problem by gathering additional training data
using distant supervision from a knowledge base.

4.2 Methodology

Relation extraction using distant supervision re-
quires two things: 1) A knowledge base contain-
ing relations between proteins, and 2) A large cor-
pus of unannotated text that contain protein men-
tions. We use the BioPax (Biological Pathway
Exchange) database (Demir et al., 2010) as our
knowledge base of protein relations and we use the
PubMed central articles as our unannotated text
corpus. Given a database entry of the form (‘Pro-
teinl’, ‘Protein2’, ‘relation’), we extract all sen-
tences from the PubMed central articles in which
the two proteins co-occur. For example, Figure
3 shows some sample sentences extracted for the
database entry ('DAG’, 'PKC’, increases). The
first two sentences in the figure indeed express
the relation in the database but the third sentence
just mentions the two proteins in a comma sepa-
rated list. We observe that a lot of the extracted
sentences fall into the category of the third sen-
tence. Hence as a first step, we filter such instances
by tagging the sentence with their parts-of-speech
and removing those in which the two proteins are
separated only by nouns (or punctuations).

4.3 AMR Path Based Selection

The traditional distant supervision approach says
that all the sentences extracted using the method
above can be used as additional training data un-
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Event Type Biopax relation
Gene_expression adds_modification
Transcription adds_modification
Localization adds_modification
Protein_catabolism adds_modification
Binding binds
Phosphorylation adds_modification
Regulation increases, increases_activity
Positive_regulation | increases, increases_activity
Negative_regulation -
Table 4: Mapping between event types and

Biopax model relations

der the assumption that all sentences in which the
proteins co-occur express the relation mentioned
in the database. However Takamatsu et al. (2012)
note that this approach can often lead to a lot of
false positives. Roth et al. (2013) have discussed
several prior work that try to reduce such noise in
the data. In our work, we develop a novel selec-
tion technique for reducing such noise using AMR
path heuristic. We make the observation that given
two protein nodes in an AMR, if there is a relation
r between the two then the shortest path between
the two protein nodes in the AMR contains the in-
teraction term expressing the relation 7.

For e.g. Figure 4 shows the AMR for the sen-
tence “DAG is important for the activation of
PKC, which phosphorylates tyrosinase, and can
also be released...” that was extracted using the
database entry { ‘DAG’, ‘PKC’, ‘increases’}. The
interaction term ‘activate’ suggesting the relation
‘increases’ exists in the shortest path between the
proteins DAG and PKC. Figure 5 shows AMR
for the sentence “The sun-network links TCF3
with ZYX and HOXA9 via NEDD9 and CREBBP,
respectively.”  extracted for the pair (‘TCF3’,
‘HOXA9’, increases). There is no interaction term
suggesting the relation ‘increases’ in the shortest
path between the proteins TCF3 and HOXA9.

Table 4 shows the mapping we define between
the event types and the relations found in the en-
tries (‘Proteinl’, ‘Protein2’, ‘relation’) that we
extracted from the Biopax model. In each sentence
extracted for the database entry (‘P;’, ‘P»’, r’),
we check if the shortest path between the two pro-
tein nodes P; and P, in the AMR of the sentence
contains one of the interaction terms correspond-
ing to the event type mapped to the relation r. We
discard all those sentences that do not satisfy this
constraint.
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Figure 4: Interaction term ‘activate’ corresponding to the
relation ’increases’ exists in the shortest path between DAG
and PKC

Figure 5: No interaction term corresponding to the rela-
tion ‘increases’ exists in the shortest path between TCF3 and
HOXA9

4.4 Using Data for LSTM Model

We use these selected sentences as additional
training data for our two LSTM models as follows:
a. Theme identification: Let S be the sentence
extracted for the database entry (‘DAG’, ‘PKC’,
‘increases’) and let ‘activates’ be the interaction
term that exists in the shortest path between the
protein nodes. Since the database entry refers to
‘DAG’ as the cause and ‘PKC’ as the theme, we
assume these roles for the two proteins in the ex-
tracted sentence S as well. Therefore, we can now
use the path between the interaction term ‘acti-
vates’ and the theme ‘PKC’ as an input sequence
for our model with the label corresponding to the
event type of the interaction term ’activates’.

b. Cause identification: In case of cause identifi-
cation instead of using the path between the inter-
action term and the theme entity, we use the short-
est path between the cause entity and the theme
entity via the interaction term and use this as an
input sequence to our model with a positive label.



S Experiments

5.1 Dataset and task setting

The event extraction task described in this work
corresponds to the Task 1 of the Genia Event
Extraction task described by the BioNLP Shared
Task series (2009, 2011 and 2013). We train
a model on a combination of abstract collection
(from 2009 edition) and full text collection (from
2011 and 2013). We test our model on the dev set
of the 2013 edition (since the gold annotation is
publicly available only for the dev set and not the
test set).

5.2 Data prepraration

The dataset made available for the Shared Task is
in the form of sentences and event annotations as
shown in Table 2. We convert these event annota-
tions into input sequences and labels for our multi-
class classification task (theme identification) and
for our binary classification task (cause identifica-
tion) as follows

a. Theme identification: Given a sentence, we
define the set 7" as the set of interaction terms cor-
responding to all its event annotations. We de-
fine the set P as the set of all its protein men-
tions. For every pair (¢;,p;) where p; € P and
t; € T, we create a training data of the form
{wy, e1,ws, €, ..., en_1, Wy, label} where the in-
put sequence corresponds to the words interwound
with edge labels in shortest path between ¢; and p;;
and the label is the event type of the event e, if
there exists an event e, : (T'ype : t;,Theme :
pi), NULL otherwise. We create the test data sim-
ilarly; except we do not use event annotations for
creating the set 7" but instead identify terms in the
sentence that was annotated as an interaction term
in the training data more than once.

b. Cause identification: For every pair (¢;, py)
where ; is part of some event annotation e, :
(T'ype : tj,Theme : p;) of event type that can
take cause argument and p;, € P, we create a train-
ing data of the form {wy, e1, wa, €, ..., €n_1, W,
label} where the input sequence corresponds to
the shortest path between p; and p; via t;; and
the label is 1 if pg is the cause of the event e,
0 otherwise.

5.3 LSTM model setup

We implement our LSTM model using the lasagne
library. For the first LSTM model, we use softmax
as our non-linear function and optimize the cat-
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egorical cross entropy loss using adam (Kingma
and Ba, 2014). For the second LSTM model, we
use a sigmoid non-linear function and optimize the
binary loss using adam. We use a dropout of 0.5,
batch size of 100 and a learning rate of 0.001.

5.4 Results and Discussion

Table 5 shows the results of our LSTM and dis-
tant supervision based event extraction model. We
compare our results with the state-of-the-art event
extraction system EVEX (Hakala et al., 2013). We
report the Approximate Span/Approximate Re-
cursive metric in all our tables (described in the
Shared Task (Kim et al., 2013)). The columns
to the left (with column heading LSTM) show
the performance of our model trained only on
the official training data. The columns to the
right (with column heading LSTM-+Distant Super-
vision) show the performance of our model trained
on official training data plus the additional training
data of 11792 sentences we gather using our dis-
tant supervision strategy.

The table highlights some of our results. Firstly,
we note that, in cases where we obtain a large
number of extra sentences using distant supervi-
sion (highlighted in the column “DS Sents”), we
see a considerable gain in the recall values be-
tween “LSTM” and “LSTM+Distant Supervision”
models. On the contrary, in cases where we ex-
tract only a small number, we see a small gain
(or sometimes even a decrease in performance).
This suggests we explore further ways of selecting
our extra sentences. Secondly, although the over-
all performance of our model using the automatic
AMR parser is lower than the current state-of-the-
art system, the gap of 5% in the F1 score can hope-
fully be reduced with the ongoing improvements
in AMR parsing.

6 Related work

The biomedical event extraction task described
in this work was first introduced in the BioNLP
Shared Task in 2009 (Kim et al., 2009). This
task helped shift the focus of relation extrac-
tion efforts from identifying simple binary inter-
actions to identifying complex nested events that
better represent the biological interactions stated
frequently in text. Existing approaches to this
task include SVM (Bjorne and Salakoski, 2013)
other ML based approaches (Riedel and McCal-
lum, 2011; Miwa et al., 2010, 2012). Methods like



LSTM LSTM + Distant Supervision EVEX
Event Type Recall  Precision F1 Recall  Precision F1 DS Sents | Recall Precision F1
Gene_expression 66.33 66.55 66.44 | 76.98 61.48 68.36 868
Transcription 55.10 28.57 37.63 | 57.14 26.92 36.60 807
Localization 36.55 63.72 46.45 | 38.07 85.06 52.60 96
Protein_catabolism 73.33 84.62 78.57 | 60.00 94.74 73.47 7
==[SVT-TOTAL]== | 57.82 60.86 57.27 | 56.35 68.05 57.60 73.83 79.56 76.59
Binding 27.61 25.94 26.75 | 28.57 26.12 27.29 139 41.14 44.77 42.88
Phosphorylation 49.21 53.75 51.38 | 73.45 45.55 56.23 3183
Regulation 16.30 29.18 2092 | 26.07 21.00 23.26 2131
Positive_regulation 25.98 35.16 29.88 | 3741 29.17 32.78 4561
Negative_regulation 23.17 30.50 26.33 | 2297 29.44 25.81 0
==[REG-TOTAL]== | 21.81 31.61 25.71 | 28.81 26.53 27.28 3241 47.16 38.41
==[ALL-TOTAL]== | 44.42 51.01 46.37 | 46.73 46.60 46.66 11792 45.44 58.03 50.97

Table 5: Evaluation results (Recall/Precision/F1) on the 2013 Genia Event Extraction dev set. LSTM
and LSTM + Distant Supervision are our models. The last column corresponds to the results of EVEX
(Hakala et al., 2013) model on the 2013 test set. Certain notable numbers are emphasized and discussed

under results 5.4.

(Liu et al., 2013; MacKinlay et al., 2013) learn
subgraph patterns from the event annotations in
the training data and cast the event detection as
subgraph matching problem. Non-feature based
approaches like graph kernels compare syntactic
structures directly (Airola et al., 2008; Bunescu
et al.,, 2005). Rule based methods that either
use manually crafted rules or generate rules from
training data (Cohen et al., 2009; Kaljurand et al.,
2009; Kilicoglu and Bergler, 2011; Bui et al.,
2013) have obtained high precision on these tasks.

In our work, we take inspiration from the
Turk Event Extraction System (TEES) (Bjorne
and Salakoski, 2013) (the event extraction system
for EVEX) that has consistently been the top per-
former in these series of tasks. They represent
events using a graph format and break the event
extraction task into separate multi-class classifica-
tion tasks using SVM as their classifier. In our
work we take a step further by making use of a
deeper semantic representation as a starting point
and identifying subgraphs in the AMR graph.

AMR has been successfully used for deeper se-
mantic tasks like entity linking (Pan et al., 2015)
and abstractive summarization (Mihalcea et al.,
2015). Work by Garg et al. (2015) is the first one
to make use of AMR representation for extracting
interactions from biomedical text. They use graph
kernel methods to answer the binary question of
whether a given AMR subgraph expresses an in-
teraction or not. Our work departs from theirs in
that they concentrate only on binary interactions
whereas we use AMR to identify complex nested
events. Also, our approach additionally makes use
of distant supervision to cope with the problem of
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limited annotated data.

Distant supervision techniques have been suc-
cessfully used before for relation extraction
(Mintz et al., 2009) in general domain. Recent
work by (Liu et al., 2014) uses minimal supervi-
sion strategy for extracting relations particularly in
biomedical texts. Our work departs from theirs in
that we introduce a novel AMR path based heuris-
tic to selectively sample the sentences obtained
from distant supervision.

7 Conclusion

In this work, we show the effectiveness of using
a deep semantic representation based on Abstract
Meaning Representations for extracting complex
nested events expressed in biomedical text. We
hypothesize that an event structure is an AMR
subgraph and empirically validate our hypothesis.
For learning to extract such event subgraphs from
AMR automatically, we develop two Recurrent
Neural Network based models: one for identifying
the theme, and the other for identifying the cause
of the event. To overcome the dearth of manually
annotated data in biomedical domain, which ex-
plains the low recall of event extraction systems,
we train our model on additional training data
gathered automatically using a selective distant su-
pervision strategy. Our experiments strongly sug-
gest that AMR parsing improvements, which are
expected given the youth of this scientific field of
inquiry, and the exploitation of larger, manually
curated Biopax-like models and collections of bio-
molecular texts will be easy to capitalize on cata-
lysts for driving future improvements in this task.
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Abstract

Social media sites (e.g., Twitter) have been
used for surveillance of drug safety at the pop-
ulation level, but studies that focus on the ef-
fects of medications on specific sets of indi-
viduals have had to rely on other sources of
data. Mining social media data for this infor-
mation would require the ability to distinguish
indications of personal medication intake in
this media. Towards that end, this paper pre-
sents an annotated corpus that can be used to
train machine learning systems to determine
whether a tweet that mentions a medication in-
dicates that the individual posting has taken
that medication (at a specific time). To demon-
strate the utility of the corpus as a training set,
we present baseline results of supervised clas-
sification.

1 Introduction

Social media allows researchers and public
health professionals to obtain relevant infor-
mation in large amounts directly from populations
and/or specific cohorts of interest, and it has
evolved into a useful resource for performing pub-
lic health monitoring and surveillance. According
to a Pew report (Greenwood et al., 2016), nearly
half of adults worldwide and two-thirds of all
American adults (65%) use social media, includ-
ing over 90% of 18-29 year olds. Recent studies
have attempted to utilize social media data for
tasks such as pharmacovigilance (Leaman et al.,
2010), identifying user behavioral patterns (Struik
and Baskerville, 2014), analyzing social circles
with common behaviors (Hanson et al., 2013b),
and tracking infectious disease  spread
(Broniatowski et al., 2015).

A large subset of the public health-related re-
search using social media data, including our prior

work in the domain, focuses on mining infor-
mation (e.g., adverse drug reactions, medication
abuse, and user sentiment) from posts mentioning
medications (Korkontzelos et al., 2016; Hanson et
al.,, 2013b; Nikfarjam et al., 2015). Typically,
these and similar studies focus on information at
the population level, but processing and deriving
information from individual user posts poses sig-
nificant challenges from the natural language pro-
cessing (NLP) perspective. Researchers attempt
to overcome the noise and inaccuracies in the data
by relying on large amounts of data. For example,
Hanson et al. (2013b; 2013a) attempted to esti-
mate the abuse of Adderall® using Twitter by de-
tecting the total number of mentions of the medi-
cation. The authors did not attempt to assess if a
mention represented personal intake or not.
While such a strategy may suffice for deriving
estimates “by proxy” at the population level (e.g.,
higher volume of chatter means higher rates of
use), it has at least two limitations: (i) the actual
number of tweets representing personal intake
within a given sample of tweets is unknown, and
(i1) it is not possible to assess the effects of medi-
cation intake on subsets of users of interest who
take the medication. Studies focusing on specific
subsets of individuals rely on other sources of
data, such as electronic health records and pub-
lished literature from clinical trials, where infor-
mation about the individuals’ medication intake is
explicit (e.g., Akbarov et al., 2015; Zhou et al.,
2016; Romagnoli et al., 2017). Harnessing social
media for studying the effects of medications on
specific cohorts would require developing sys-
tems that can automatically distinguish posts that
express personal intake from those that do not.
Due to the very recent incorporation of social
media data in healthcare systems, published re-
search on our target task of creating a corpus for
automatic detection of personal medication intake
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information is scarce. The study by Alvaro et al.
(2015) is perhaps the most closely related work to
ours. The authors annotated 1,548 tweets for
whether they contain “first-hand experiences” of
adverse drug reactions (ADRs) to prescription
medications, and they used this annotated data in
a supervised classification framework aimed at
automatically identifying tweets that report per-
sonal usage. As far as we are aware, however, they
have not made their annotated data public; none-
theless, we do not believe that it would have been
exactly the right training set for our classification
task. Because our focus is to help set the ground-
work for using social media data in medication-
related cohort studies, we included a subtle but
key factor in our criteria for identifying personal
intake: when the medication was taken. We will
discuss this factor in more detail in the next sec-
tion. In this paper, we present (i) an analysis of
medication-mentioning chatter on Twitter, (ii) a
publicly available, annotated corpus of tweets that
can be used to advance automatic systems, and
(iii) baseline supervised classification results to
validate the utility of the annotated data.

2 Method

We chose Twitter as the data source for this study
because of its growing popularity in public health
research, and its easy-to-use public APIs. We dis-
cuss the three primary tasks—data collection, an-
notation, and classification—in the following sub-
sections.

2.1 Data Collection

To build the corpus, we queried 73,800 Twitter
user timelines (that we collected for related work)
for 55 medication names, including both prescrip-
tion and over-the-counter medications, brand and
generic names, and types of medications (e.g.,
steroid). Using a tool that was developed by
Pimpalkhute et al. (2014), we generated frequent
misspellings of the medications in order to expand
the query. We then tokenized all of the tweets, us-
ing the ARK Twokenizer (O’Connor et al., 2010;
Owoputi et al., 2013), and identified 35,075
tweets containing a target medication. To account
for the linguistic idiosyncrasies of how Twitter us-
ers might express their medication intake, we ran-
domly selected one medication tweet from the
18,033 timelines that included such a tweet, and
we prepared them for annotation. For this paper,

! The annotation guidelines and a sample of the annotated
data are available at:
https://healthlanguageprocessing.org/twitter-med-intake/

10,260 tweets were annotated, with overlapping
annotations for 1,026 (10%).

2.2 Annotation

In order to control for studying the effects of med-

ication intake on subsets of individuals in a social
media setting, we decided that tweets of interest
should not only represent the author’s personal us-
age of the target medication in the tweet; they
should also indicate the specific instance in which
the user took the mentioned medication, since re-
searchers using social media data cannot physically
observe and record when medications were taken.
Only if the tweets provide this additional infor-
mation about the time of intake can we potentially
use Twitter data to assess causal associations be-
tween users’ health information (also mined from
social media data) and the usage of particular med-
ications. As we mentioned earlier, the way that time
factors into our definition of “intake” marks an im-
portant distinction between our annotated data and
Alvaro et al.’s (2015).

We found that, under minimal guidance, intui-
tively agreeing on what constituted a personal in-
take of medication, given the above criteria, was
very difficult. We attribute this difficulty to the
wide range of linguistic patterns in which we found
medication mentions occurring. In an effort to ob-
tain high inter-annotator agreement and address the
human disagreement that Alvaro et al. seek to over-
come, we analyzed linguistic patterns in samples of
the data and used this analysis to inform the devel-
opment of annotation guidelines;' in addition, we
limited the number of annotation classes to the
three high-level classes that we thought were most
directly relevant to the classification task at hand:
intake, possible intake, and no intake.

We will summarize our analysis of the three
classes of tweets here. Intake tweets indicate that
(1) the medication was actually taken, (ii) the author
of the tweet personally took the medication, and
(iii) the medication was taken at a specific time. To
illustrate (i), consider the following tweets:

(a) Migraine from hell... Took 6 Motrin and
nothing’s touching it

(b) I've been off adderall about a month now
and I'm so much happier, but COM-
PLETELY useless. I'm like a child again.
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(c) A lot of people hate on prednisone but I feel
better already. #stuffworksforme

(d) this ibuprofen still ain't kicked in my head
poundin

While only (a) uses a verb phrase that explicitly
indicates intake (took...), we can infer from fea-
tures of the other tweets that the medication was
taken: (b) being off the medication, (¢) experienc-
ing the effects of the medication, and (d) waiting
for the medication to kick in all entail that the
medication was taken.

Moreover, intake tweets should indicate that
the author of the tweet took the medication:

(e) Sorry for this rant thingy, I took my
Vyvanse today lol

(f) Sick and only had a Tylenol PM at work so
now i feel better but i am fighting sleep©

(g) Just threw back these Xanax

(h) Insoooo much pain tonight and Tylenol just
isn't cutting it. Literally hurting all over

Through the use of the first-person reference I, (¢)
explicitly states that the author took the medica-
tion, and (f) explicitly attributes the experiential
effects of the medication (feel better, but fighting
sleep) to the author. While (g) and (h) do not ex-
plicitly reveal that the author took the medication
(threw back) or is (not) experiencing the effect of
the medication (isn’t cutting it), respectively, the
high degree of self-presentation in social media
(e.g., Kaplan and Haenlein, 2010; Papacharissi,
2012; Seidman, 2013) allows us to infer that the
authors are writing about their own intake and ex-
periences.

Finally, intake tweets also specify when the med-
ication was taken:

(i) I'vebeen sick for the last 3 days taking [bu-
profen just feel better and to fight Infection
"swelling"

(j) Tylenol is my bestfriend at the moment

(k) maybe i'm tired as had 2 tramadol my bk is
sore sore sore... #scoliosis

(1) Prednisone headache! Ahhhh

Tweet (i) uses a temporal marker that explicitly
specifies an instance of intake, and, similarly, (j)
explicitly indicates when the effect of the intake
occurred. Although (k) and (1) do not explicitly
specify instances of intake, Twitter’s real-time na-

ture (Sakaki et al., 2010) gives us reason to be-
lieve that the author of (k) recently had the medi-
cation and that the effect in (1) is being currently
experienced, which represents an intake in the re-
cent past (i.e., a specific instance).

Unlike intake tweets, some tweets do not specify
that the author actually took the medication or
when the medication was taken, but, unlike no in-
take tweets, are generally about the author’s intake.
Consider the following tweets:

(m) I want to cry it's that painful &)gonna take
codeine this morning for sure

(n) 800 mg of Advil cause this headache is
real

(o) I need a Xanax like right now

(p) Codeine is one hell of a drug. OO

(q) ©O® I never understood why I get so an-
gryyyy omg I was so mellow on Xanax @

(r) Ipretty much eat Advil like it's
candy.®

We consider a tweet to be a possible intake if it
expresses the intake as a future event (m); it con-
tains merely a purpose for intake (n); it expresses
a present-tense need for the medication (0); it ab-
stractly praises (or criticizes) the medication with-
out describing a concrete effect (p); it indicates
that the author has used the medication in the past,
but does not specify when (q); or, similarly, it in-
dicates that the author uses the medication fre-
quently, but does not specify an instance of intake
(r). We decided to distinguish possible intake
tweets because they can direct us to a user’s time-
line for manual probing, where we may find, for
example, that a series of tweets aggregate to form
a sort of composite intake tweet.

In contrast to intake and possible intake tweets,
no intake tweets are not about the author’s intake
of the medication. While some no intake tweets are
not about intake at all, some may be about the in-
take by others, not the author:

(s) @[Username redacted] Mine hurt for days

last year!! Take some paracetamol hun ©

(t) Gave James 2 ibuprofen pm and I'm being
repaid by the sound of him snoring penetrat-
ing through my earplugs

The act of suggesting a medication (s) or giving
someone a medication (t) might be interpreted as
implying that the author has taken the medication
in the past (i.e., a possible intake), but, because the
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tweets are not primarily about the author’s intake,
we consider this inferential leap to be too large to
warrant the same classification as other possible
intake tweets.

While (s) and (t) are explicitly not about the au-
thor’s intake, other tweets may not be as obvious,
such as tweets that contain merely the name of a
medication:

(u) @[Username redacted] @[Username re-
dacted] @[Username redacted]
@[Username redacted] methadone !

Although (u) also might be interpreted as indicat-
ing the author’s use of the medication, the textual
evidence does not seem to favor this interpretation
over other possible ones, such as mere question-
answering. We classify tweets that contain merely
the name of a medication as no intake because,
unlike intake and possible intake tweets, they do
not contain enough information for us to conclude
that they are about the author’s intake.

The “addressivity” (Bakhtin, 1986) markers
“@” in (u) reflect the “dialogic” (Bakhtin, 1981)
space of social media, wherein the linguistic data
that we are mining is not only textual, but “inter-
textual” (Kristeva, 1980)—that is, oriented to what
has already been said by others. Tweets also mark
this social orientation to others through features of
“reported speech” (Voloshinov, 1973). Consider
the following tweets:

(v) @[Username redacted] "I don't either cause
these Tylenol aren't doing crap!" Lol

(w) I just wanna give a shoutout to adderall for
helping me get through the semester - Flor-
ida State

While (v) and (w) would otherwise be classified
as intake tweets, the quotation marks in (v) and
the hyphen in (w) mark that the authors are di-
rectly reporting the words of others—in (w), a stu-
dent at Florida State—not their own medication
intake.

Other cases of reported speech involve tweets
that make cultural references about taking medica-
tions—for example, song lyrics or lines from mov-
ies. As our analysis of the three classes suggests,
identifying indications of personal medication in-
take in social media required grappling with a num-
ber of annotation issues, which forecast the chal-
lenges of using this data to train classifiers.

2 Available at: http://www.cs.waikato.ac.nz/ml/weka/. Ac-
cessed: 5/25/2017.

2.3 Classification

We performed supervised classification experi-
ments using several algorithms. The goal for these
experiments was not to identify the best perform-
ing classification strategy, but to (i) verify that au-
tomatic classifiers could be trained using this data,
and (ii) generate baseline performance estimates.

We used stratified 80-20 (training/test) split of
the annotated set for the experiments. As features,
we used only word n-grams (n = 1, 2, and 3) fol-
lowing standard preprocessing (e.g., stemming us-
ing the Porter stemmer (Porter, 1980) and lower-
casing). We experimented with four classifiers—
naive bayes (NB), support vector machines (SVM),
random forest (RF), logistic regression (LR), and a
majority-voting based ensemble of the last three.
Pairwise classification (i.e., 1-vs-1) is used to adapt
the SVMs to the multiclass problem. Parameter op-
timization for the individual classifiers was per-
formed via 10-fold cross validation over the train-
ing set, with an objective function that maximizes
the F-score for the intake class.

Following the classification experiments, we
performed brief error and feature analyses to iden-
tify common misclassification patterns and possi-
ble future approaches for improving classification
performance. To identify informative n-grams for
the intake class, we applied the Information Gain
feature evaluation technique, which computes the
importance of an attribute with respect to a class
according to the following equation:

1G(Class, Attribute) = H(Class) — H(Class|Attribute)

H () represents the information entropy for a given
state (Yang and Pedersen, 1997). We used the Weka
3 tool? for all machine learning and feature analysis
experiments. We present the results for these exper-
iments in the next section.

3 Results and Discussion

In this section, we present and discuss the results of
annotation and the baseline classification experi-
ments, including a brief error analysis of misclassi-
fied intake tweets and a feature analysis to identify
informative n-grams.

3.1 Annotation

For the corpus that we present in this paper, two
expert annotators have annotated 10,260 tweets,
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with overlapping annotations for 1,026 (10%).
Their inter-annotator agreement was k = 0.88 (Co-
hen’s Kappa). They disagreed on 81 tweets, which
the first author of this paper resolved through in-
dependent annotation. In total, 1,952 tweets
(19%) were annotated as intake; 3,219 (31%)
were annotated as possible intake; and 5,089
(50%) were annotated as no intake. These fre-
quencies suggest that a minority of tweets that
mention medications represent personal intake,
which substantiates the need for this classification
when mining large amounts of social media data
for drug safety surveillance.

3.2 Classification

Table 1 presents the performances of the different
classifiers. The overall accuracy (Acc) over the
three classes and the F-scores (F) for each of the
three classes are shown. The no intake (NI) class
has the best F-score due to the larger number of
training instances. SVMs, RF and LR classifiers
have comparable accuracies, and they outperform
the NB baseline. SVMs have the highest F-score
for the intake (I) class, suggesting that it might be
the most suitable classifier for this task.

The voting-based ensemble of the three classifi-
ers does not improve performance over the SVMs.
Post-classification analyses revealed that this is be-
cause the individual classifiers in the ensemble,
particularly the LR and SVMs classifiers, make al-
most identical predictions given the feature set of
n-grams. The confusion matrices for the classifiers’
predictions are also alike, with strong inter-classi-
fier agreements in terms of false and true positives
and negatives. The results and the analyses suggest
that incorporating/generating features that are more
informative is more likely to improve performance
on this task, rather than combining multiple classi-
fiers on the same feature vectors.

I PI NI Acc 95%

®» | ® | ® | % c
NB 0.59 0.58 0.73 64.4 62.4-66.3
SVM 0.67 0.69 0.80 73.4 71.5-75.1
RF 0.60 0.68 0.80 72.2 70.4-74.0
LR 0.65 0.68 0.79 72.5 70.7-74.3
Ensemble 0.67 0.69 0.80 733 71.4-75.1

Table 1: Class-specific F-scores and accuracies
for four classifiers and ensemble

The promising results obtained from automatic
classification verify that our annotated dataset
may indeed be used for training automated classi-

fication systems. Including more informative fea-
tures is likely to further improve performance,
particularly for the smallest (intake) class.

3.3 Error and Feature Analyses

An analysis of the false negative results of the in-
take class from the SVM classifier suggests that the
majority of the errors (62%) could be attributed to
the implicit indication that (i) the medication was
taken, (ii) the author of the tweet personally took
the medication, or (iii) the medication was taken at
a specific time. In 69% of these cases, the intake
tweet did not explicitly state (i), that the medication
was taken. The next largest set of misclassified in-
take tweets comprised instances where the intake
tweets contain lexical features that seem to fre-
quently occur in the other classes (e.g., negation).
Incorporating semantic features into the SVM clas-
sifier is likely to improve classification of the in-
take tweets.

Table 2 presents the 15 most informative n-
grams for distinguishing the intake class from the
others, as identified by the information gain meas-
ure. The table suggests that certain personal pro-
nouns and explicit markers of personal consump-
tion (e.g., | took), information about effectiveness
(e.g., not working), and expressions indicating the
need for a medication (e.g., need a) are useful n-
grams for the classification task.

i not helping i ve taken
took i need not working
i took ve been taking still in
took some took two need a
tokick in i ve taken just took

Table 2: Most informative n-grams that distin-
guish the intake class from the others

4 Conclusion

In this paper, we presented a brief analysis of what
we consider to be linguistic representations of per-
sonal medication intake on Twitter. This linguistic
analysis informed our manual annotation of
10,260 tweets. We presented baseline supervised
classification results that suggest that this anno-
tated corpus can be used for training automated
classification systems to detect personal medica-
tion intake in large amounts of social media data,
and we will seek to improve the performance of
our classifiers in future work. We believe that this
classification is an important step towards broad-
ening the use of social media for surveillance of
drug safety.
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Abstract

We present an unsupervised context-
sensitive spelling correction method for
clinical free-text that uses word and char-
acter n-gram embeddings. Our method
generates misspelling replacement candi-
dates and ranks them according to their se-
mantic fit, by calculating a weighted co-
sine similarity between the vectorized rep-
resentation of a candidate and the mis-
spelling context. We greatly outperform
two baseline off-the-shelf spelling cor-
rection tools on a manually annotated
MIMIC-III test set, and counter the fre-
quency bias of an optimized noisy channel
model, showing that neural embeddings
can be successfully exploited to include
context-awareness in a spelling correction
model. Our source code, including a
script to extract the annotated test data, can
be found at https://github.com/
pieterfivez/bionlp2017.

1 Introduction

The genre of clinical free-text is notoriously noisy.
Corpora contain observed spelling error rates
which range from 0.1% (Liu et al., 2012) and 0.4%
(Lai et al., 2015) to 4% and 7% (Tolentino et al.,
2007), and even 10% (Ruch et al., 2003). This
high spelling error rate, combined with the vari-
able lexical characteristics of clinical text, can ren-
der traditional spell checkers ineffective (Patrick
et al., 2010).

Recently, Lai et al. (2015) have achieved nearly
80% correction accuracy on a test set of clinical
notes with their noisy channel model. However,
their model does not leverage any contextual in-
formation, while the context of a misspelling can
provide important clues for the spelling correction
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process, for instance to counter the frequency bias
of a context-insensitive corpus frequency-based
system. Flor (2012) also pointed out that ignor-
ing contextual clues harms performance where a
specific misspelling maps to different corrections
in different contexts, e.g. iron deficiency due to
enenia — anemia vs. fluid injected with enentict
— enema. A noisy channel model like the one by
Lai et al. will choose the same item for both cor-
rections.

Our proposed method exploits contextual clues
by using neural embeddings to rank misspelling
replacement candidates according to their seman-
tic fit in the misspelling context. Neural embed-
dings have recently proven useful for a variety of
related tasks, such as unsupervised normalization
(Sridhar, 2015) and reducing the candidate search
space for spelling correction (Pande, 2017).

We hypothesize that, by using neural embed-
dings, our method can counter the frequency bias
of a noisy channel model. We test our sys-
tem on manually annotated misspellings from the
MIMIC-III (Johnson et al., 2016) clinical notes. In
this paper, we focus on already detected non-word
misspellings, i.e. where the misspellings are not
real words, following Lai et al.

2 Approach

2.1 Candidate Generation

We generate replacement candidates in 2 phases.
First, we extract all items within a Damerau-
Levenshtein edit distance of 2 from a reference
lexicon. Secondly, to allow for candidates be-
yond that edit distance, we also apply the Dou-
ble Metaphone matching popularized by the open
source spell checker Aspell.! This algorithm
converts lexical forms to an approximate pho-
netic consonant skeleton, and matches all Dou-

"http://aspell.net/metaphone/
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ble Metaphone representations within a Damerau-
Levenshtein edit distance of 1. As reference lexi-
con, we use a union of the UMLS® SPECIALIST
lexicon® and the general dictionary from Jazzy>, a
Java open source spell checker.

2.2 Candidate Ranking

Our setup computes the cosine similarity be-
tween the vector representation of a candidate and
the composed vector representations of the mis-
spelling context, weights this score with other pa-
rameters, and uses it as the ranking criterium. This
setup is similar to the contextual similarity score
by Kilicoglu et al. (2015), which proved unsuc-
cessful in their experiments. However, their ex-
periments were preliminary. They used a limited
context window of 2 tokens, could not account for
candidates which are not observed in the train-
ing data, and did not investigate whether a big-
ger training corpus leads to vector representations
which scale better to the complexity of the task.

We attempt a more thorough examination of the
applicability of neural embeddings to the spelling
correction task. To tune the parameters of our
unsupervised context-sensitive spelling correction
model, we generate tuning corpora with self-
induced spelling errors for three different scenar-
ios following the procedures described in section
3.2. These three corpora present increasingly dif-
ficult scenarios for the spelling correction task.
Setup 1 is generated from the same corpus which
is used to train the neural embeddings, and exclu-
sively contains corrections which are present in the
vocabulary of these neural embeddings. Setup 2 is
generated from a corpus in a different clinical sub-
domain, and also exclusively contains in-vector-
vocabulary corrections. Setup 3 presents the most
difficult scenario, where we use the same corpus as
for Setup 2, but only include corrections which are
not present in the embedding vocabulary (OOV).
In other words, here our model has to deal with
both domain change and data sparsity.

Correcting OOV tokens in Setup 3 is made pos-
sible by using a combination of word and char-
acter n-gram embeddings. We train these embed-
dings with the fastText model (Bojanowski et al.,
2016), an extension of the popular Word2Vec
model (Mikolov et al., 2013), which creates vec-

https://lexsrv3.nlm.nih.gov/
LexSysGroup/Projects/lexicon/current/
web/index.html

3http: //jazzy.sourceforge.net
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Figure 1: The final architecture of our model. It
vectorizes every context word on each side within
a specified scope if it is present in the vector vo-
cabulary, applies reciprocal weighting, and sums
the representations. It then calculates the cosine
similarity with each candidate vector, and divides
this score by the Damerau-Levenshtein edit dis-
tance between the candidate and misspelling. If
the candidate is OOV, the score is divided by an
OOV penalty.
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tor representations for character n-grams and sums
these with word unigram vectors to create the final
word vectors. FastText allows for creating vector
representations for misspelling replacement can-
didates absent from the trained embedding space,
by only summing the vectors of the character n-
grams.

We report our tuning experiments with the dif-
ferent setups in 4.1. The final architecture of our
model is described in Figure 1. We evaluate this
model on our test data in section 4.2.

3 Materials

We tokenize all data with the Pattern tokenizer (De
Smedt and Daelemans, 2012). All text is lower-
cased, and we remove all tokens that include any-
thing different from alphabetic characters or hy-
phens.



3.1 Neural embeddings

We train a fastText skipgram model on 425M
words from the MIMIC-III corpus, which contains
medical records from critical care units. We use
the default parameters, except for the dimension-
ality, which we raise to 300.

3.2 Tuning corpora

In order to tune our model parameters in an
unsupervised way, we automatically create self-
induced error corpora. We generate these tuning
corpora by randomly sampling lines from a refer-
ence corpus, randomly sampling a single word per
line if the word is present in our reference lexi-
con, transforming these words with either 1 (80%)
or 2 (20%) random Damerau-Levenshtein opera-
tions to a non-word, and then extracting these mis-
spelling instances with a context window of up to
10 tokens on each side, crossing sentence bound-
aries. For Setup 1, we perform this procedure
for MIMIC-III, the same corpus which we use to
train our neural embeddings, and exclusively sam-
ple words present in our vector vocabulary, re-
sulting in 5,000 instances. For Setup 2, we per-
form our procedure for the THYME (Styler IV
et al., 2014) corpus, which contains 1,254 clin-
ical notes on the topics of brain and colon can-
cer. We once again exclusively sample in-vector-
vocabulary words, resulting in 5,000 instances.
For Setup 3, we again perform our procedure for
the THYME corpus, but this time we exclusively
sample OOV words, resulting in 1,500 instances.

3.3 Test corpus

No benchmark test sets are publicly available for
clinical spelling correction. A straightforward an-
notation task is costly and can lead to small cor-
pora, such as the one by Lai et al., which con-
tains just 78 misspelling instances. Therefore, we
adopt a more cost-effective approach. We spot
misspellings in MIMIC-III by looking at items
with a frequency of 5 or lower which are ab-
sent from our lexicon. We then extract and an-
notate instances of these misspellings along with
their context, resulting in 873 contextually dif-
ferent instances of 357 unique error types. We
do not control for the different genres covered in
the MIMIC-III database (e.g. physician-generated
progress notes vs. nursing notes). However,
in all cases we make sure to annotate actual
spelling mistakes and typos as opposed to abbre-
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viations and shorthand, resulting in instances such
as phebilitis — phlebitis and sympots — symp-
toms. We provide a script to extract this test set
from MIMIC-III at https://github.com/
pieterfivez/bionlp2017.

4 Results

For all experiments, we use accuracy as the metric
to evaluate the performance of models. Accuracy
is simply defined as the percentage of correct mis-
spelling replacements found by a model.

4.1 Parameter tuning

To tune our model, we investigate a variety of pa-
rameters:

Vector composition functions

(a) addition
(b) multiplication
(c) max embedding by Wu et al. (2015)

Context metrics

(a) Window size (1 to 10)

(b) Reciprocal weighting

(c) Removing stop words using the English stop
word list from scikit-learn (Pedregosa et al.,
2011)

(d) Including a vectorized representation of the
misspelling

Edit distance penalty

(a) Damerau-Levenshtein

(b) Double Metaphone

(c) Damerau-Levenshtein + Double Metaphone
(d) Spell score by Lai et al.

We perform a grid search for Setup 1 and Setup 2
to discover which parameter combination leads to
the highest accuracy averaged over both corpora.
In this setting, we only allow for candidates which
are present in the vector vocabulary. We then in-
troduce OOV candidates for Setup 1, 2 and 3, and
experiment with penalizing them, since their rep-
resentations are less reliable. As these representa-
tions are only composed out of character n-gram
vectors, with no word unigram vector, they are
susceptible to noise caused by the particular na-
ture of the n-grams. As a result, sometimes the
semantic similarity of OOV vectors to other vec-
tors can be inflated in cases of strong orthographic
overlap.



Table 1: Correction accuracies for our 3 tuning
setups.

Setup1l Setup2 Setup3

90.24 88.20 57.00
85.02 85.86 39.73

Context
Noisy Channel

Since OOV replacement candidates are more
often redundant than necessary, as the majority of
correct misspelling replacements will be present in
the trained vector space, we try to penalize OOV
representations to the extent that they do not cause
noise in cases where they are redundant, but still
rank first in cases where they are the correct re-
placement. We tune this OOV penalty by maxi-
mizing the accuracy for Setup 3 while minimizing
the performance drop for Setup 1 and 2, using a
weighted average of their correction accuracies.

All parameters used in our final model architec-
ture are described in Figure 1. The optimal con-
text window size is 9, whereas the optimal OOV
penalty is 1.5.

To compare our method against a reference
noisy channel model in the most direct and fair
way, we implement the ranking component of Lai
et al.’s model in our pipeline (Noisy Channel),
and optimize it with the same MIMIC-III materials
that we use to train our embeddings. We perform
the optimization by extracting corpus frequencies,
which are used to estimate the prior probabilities
in the ranking model, from this large data con-
taining 425M words. In comparison, Lai et al.’s
own implementation uses corpus frequencies ex-
tracted from data containing only 107K words,
which is a rather small amount to estimate reliable
prior probabilities for a noisy channel model. In
the optimized setting, our context-sensitive model
(Context) outperforms the noisy channel for each
corpus in our tuning phase, as shown in Table 1.

4.2 Test

Table 2 shows the correction accuracies for Con-
text and Noisy Channel, as compared to two base-
line off-the-shelf tools. The first tool is Hun-
Spell, a popular open source spell checker used by
Google Chrome and Firefox. The second tool is
the original implementation of Lai et al.’s model,
which they shared with us. The salient difference
in performance with our own implementation of
their noisy channel model highlights the influence
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Figure 2: 2-dimensional t-SNE projection of the
context of the test misspelling “goint” and 4 re-
placement candidates in the trained vector space.
Dot size denotes corpus frequency, numbers de-
note cosine similarity. The misspelling context is
“new central line lower extremity bypass with sob
now [goint] to [be] intubated”. While the noisy
channel chooses the most frequent “point”, our
model correctly chooses the most semantically fit-
ting “going”.

of training resources and tuning decisions on the
general applicability of spelling correction mod-
els.

The performance of our model on the test set
is slightly held back by the incomplete coverage
of our reference lexicon. Missing corrections are
mostly highly specialized medical terms, or in-
flections of more common terminology. Table 2
shows the scenario where these corrections are
added to the reference lexicon, leading to a score
which is actually higher than those for the tuning
corpora.

To analyze whether our context-sensitive model
successfully counters the frequency bias of our op-
timized noisy channel model, we divide the in-
stances of the test set into three scenarios accord-
ing to the relative frequency of the correct replace-
ment compared to the other replacement candi-
dates. In cases where the correct replacement is
the most or second most frequent candidate, the
noisy channel scores slightly better. In all other
cases, however, our method is more stable. Figure
2 visualizes an example.

Nevertheless, some issues have to be raised.
First of all, for the cases with low relative fre-
quency of the correct replacement, the small sam-
ple size should be kept in mind: the difference be-
tween both models concerns 6 correct instances on



Table 2: The correction accuracies for our test set, evaluated for two different scenarios. Off-the-shelf:

gives the accuracies of all off-the-shelf tools.

With completed lexicon: gives the accuracies of our

implemented models for the scenario where correct replacements missing from the lexicon are included

in the lexicon before the experiment.

Evaluation HunSpell Laietal. Context Noisy Channel
OFF-THE-SHELF 52.69 61.97 88.21 87.85
WITH COMPLETED LEXICON 93.02 92.66

a total of 243. While the difference is very pro-
nounced in the much larger tuning corpora, the
artificial nature of those corpora does not lead to
strong evidence. Moreover, considering the simi-
larity of the general performance of both models
on the test set, more test data is needed to make
a strong empirical claim about this specific aspect
of our model.

While we have optimized the prior probabilities
of Lai et al.’s ranking model, the posterior prob-
abilities are still estimated with Lai et al.’s rudi-
mentary spell score, which is a weighted combi-
nation of Damerau-Levenshtein and Double Meta-
phone edit distance. While this error model leads
to a noisy channel model which is robust in per-
formance, as shown by our test results, an empir-
ical error model derived from a large confusion
matrix can for example help correct the instance
described in Figure 2, by capturing that the word-
final transformation ¢+ — g is more probable than
the word-initial transformation g — p. As of now,
however, such a resource is not available for the
clinical domain.

The errors that our model makes concern, pre-
dictably, misspellings for which the contextual
clues are too unspecific or misguiding. These
cases remain challenging for the concept of our
method. While our tuning experiments have ex-
plicitly tried to maximize the scope and efficiency
of our model, there is still room for improvement,
especially for OOV corrections, even as we han-
dle them more effectively than context-insensitive
frequency-based methods.

5 Conclusion and future research

In this article, we have proposed an unsupervised
context-sensitive model for clinical spelling cor-
rection which uses word and character n-gram em-
beddings. This simple ranking model, which can
be tuned to a specific domain by generating self-
induced error corpora, counters the frequency bias
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of a noisy channel model by exploiting contextual
clues. As an implemented spelling correction tool,
our method greatly outperforms two baseline off-
the-shelf spelling correction tools, both a broadly
used and a domain-specific one, for empirically
observed misspellings in MIMIC-III.

Future research can investigate whether our
method transfers well to other genres and do-
mains. Secondly, handling corrections which are
not observed in any training data still proves to be
a tough task, which might benefit from new con-
ceptual insights. Lastly, it is worthwhile to investi-
gate how our model interacts with the misspelling
detection task compared to existing models.
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Abstract

Approximately 80% to 95% of patients
with Amyotrophic Lateral Sclerosis (ALS)
eventually develop speech impairments
(Beukelman et al., 2011), such as defective
articulation, slow laborious speech and hy-
pernasality (Duffy, 2013). The relation-
ship between impaired speech and asymp-
tomatic speech may be seen as a diver-
gence from a baseline. This relationship
can be characterized in terms of measur-
able combinations of phonological charac-
teristics that are indicative of the degree
to which the two diverge. We demon-
strate that divergence measurements based
on phonological characteristics of speech
correlate with physiological assessments
of ALS. Speech-based assessments offer
benefits over commonly-used physiologi-
cal assessments in that they are inexpen-
sive, non-intrusive, and do not require
trained clinical personnel for administer-
ing and interpreting the results.

1 Introduction

Amyotrophic lateral sclerosis (ALS) or Lou
Gehrig’s Disease, the most common form of mo-
tor neuron disease, is a rapidly progressive, neu-
rodegenerative condition. It is characterized by
muscle atrophy, muscle weakness, muscle spastic-
ity, hyperreflexia, difficulty speaking (dysarthria),
difficulty swallowing (dysphagia), and difficulty
breathing (dyspnea). Mean survival time for ALS
patients is three to five years from the time it
is diagnosed; however, death may occur within
months, or survival may last decades.

Most physiological assessments used to deter-
mine the functional status of patients with ALS are
invasive, involving the use of expensive equipment
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and requiring trained clinical personnel to admin-
ister the tests and interpret the results. This is the
case for a number of standardized objective assess-
ments of bulbar function in ALS patients (Green
et al., 2013), for example: breathing patterns, ar-
ticulatory patterns, and voice loudness. These are
generally measured by technologies that record
chest wall movements, oral pressures and flows,
oral movement and strength, and speech acoustics.

This paper lays the foundation for the devel-
opment of less invasive phonologically-inspired
measures that correlate strongly with (more inva-
sive) physiological measures of ALS. Speech im-
pairments eventually affect 80% to 95% of pa-
tients with ALS (Beukelman et al., 2011). In
fact, Yorkston et al. (1993) noted that speech im-
pairments may be present up to 33 months prior
to diagnosis of ALS. Several previous studies
(Yunusova et al., 2016) have shown that speech
impairments correlate with physiological changes
associated with ALS. Thus, we focus on corre-
lating measures based on phonological features
with standard physiological measures, thus en-
abling new, non-invasive measures for assessing
the functionality of an ALS patient without signif-
icant overhead for personnel training and adminis-
tration.

To bring this about, we determine the degree of
divergence of symptomatic speech from asymp-
tomatic speech taken as a baseline.! This determi-
nation is based on phonological features in speech,
most of which have been previously identified in
the literature as being associated with ALS, e.g.,
monoloudness, hypernasality and distorted vow-
els, see (Duffy, 2013). These are annotated, for
the current study, by specialists, i.e., a phonolo-

'As part of a longitudinal study, we are exploring indi-
vidual baselines for each ALS speaker: speech from each
speaker’s first visit is taken as an individual baseline for the
speaker.

Proceedings of the BioNLP 2017 workshop, pages 149-158,
Vancouver, Canada, August 4, 2017. (©2017 Association for Computational Linguistics



gist and a speech therapist experienced in working
with ALS patients. The degree of divergence is
correlated with physiological assessments of ALS,
namely %FVC (Forced Vital Capacity) in sitting
(%FVC-SIT) as well as supine (%FVC-SUP) po-
sitions.”

The rest of the paper is organized as follows: In
Section 2 we discuss related work that motivates
and informs our research. Section 3 describes data
used for our experiments. A discussion of speech
divergence is presented in Section 4. Section 5
presents an assessment of the degree to which
divergent characteristics in the speech match the
level of progress of the ALS condition. This is
followed by a discussion of future work and con-
clusions in Section 6.

2 Related Work

A number of past studies have investigated the
utility of measuring the “voice signal” in order
to answer questions about a speaker’s state from
their speech (Schuller et al., 2015, 2011). One
such study attempts to distinguish classes of in-
dividuals with various speech impairments, such
as stuttering (N6th et al., 2000), aphasia (Fraser
et al., 2014), and developmental language dis-
orders (Gorman et al., 2016). The recognition
of impaired speech has been employed to de-
tect Alzheimer’s (Rudzicz et al., 2014). Various
speech-related features have been employed to de-
tect whether the speech is affected by Parkinson’s
Disease (Bocklet et al., 2011). Relatedly, varia-
tions in speech properties under intoxicated and
sober conditions have also been conducted (Bi-
adsy et al., 2011).

Our work differs from prior approaches in that
we explore perceivable phonological characteris-
tics through the analysis of language divergences.
One of the motivations for using phonological fea-
tures exclusively rather than also using other fea-
tures employed in prior studies was that phono-
logical features did not require expensive equip-
ment to collect data from speakers as e.g., a fea-
ture like maximum subglottal pressure would re-
quire. Since the goal of this work is to develop
a measure that is completely based on speech fea-
tures that can be identified with a simple click on a

29FVC-SUP refers to the percent value of the Forced
Vital Capacity while the person is in supine position, and
%FVC-SIT refers to the percent value of the Forced Vital Ca-
pacity while the person is in sitting position. See (Brinkmann
et al., 1997; Czaplinski et al., 2006) for additional informa-
tion about use of FVC in ALS assessments.
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device such as a phone, we focused on phonologi-
cal features on which a machine can be trained to
analyze automatically. Our focus on correlations
with phonological features—tied to the notion of
divergence from a baseline—is a significant con-
tribution beyond what has been investigated previ-
ously.

The notion of divergence itself is not a new one
in natural language processing. The characteriza-
tion of divergence classes (Dorr, 1994) has been at
the heart of solutions to many different problems
ranging from word alignment (Dorr et al., 2002)
to machine translation (Habash and Dorr, 2002)
to acquisition of semantic lexicons (Olsen et al.,
1998). Finding the minimal primitive units—and
determining their possible combinations—was the
foundation for this earlier work. However, in these
earlier studies, primitives consisted of properties
that were syntactic, lexical, or semantic in nature,
whereas the primitives for the current work consist
of properties that are phonological in nature.

Beukelman et al. (2011), Duffy (2013), Green
et al. (2013), and Orimaye et al. (2014) have es-
tablished that pronunciation varies systematically
within categories of speech impairment. (Silber-
gleit et al., 1997; Carrow et al., 1974) have shown
that ALS speech shows deviant characteristics.
For example, (Ball et al., 2001) observe that ALS
speakers manifest altered voice quality. A num-
ber of speaker-level characteristics associated with
impaired speech studied in prior work have been
leveraged for our speech-related divergence detec-
tion. For example, Duffy (2013) specifically has
enumerated speaker-level characteristics, such as
monopitch and monoloudness.

Rong et al. (2015; 2016), and Yunusova et
al. (2016) have previously attempted to iden-
tify measures of speech motor function for ALS
speech. While certain components of speech such
as speaking rate, breathing patterns, and voice
loudness have proven too variable to provide a re-
liable marker (Green et al., 2013), we demonstrate
that divergence measurements based on phonolog-
ical characteristics of speech correlate with physi-
ological assessments of ALS.

In addition to speaker-level characteristics and
associated properties, our work defines divergence
in terms of speech/span-level characteristics, as
described in Section 3. Smaller vowel space ar-
eas have been found in ALS speech (Turner et al.,
1995; Weismer et al., 2001) which suggests that



vowels may be distorted in ALS speech. Simi-
larly, Kent et al (Kent et al., 1990) found place
and manner of articulation for some consonants,
and regulation of tongue height for vowels to di-
verge from asymptomatic speech; these were ex-
pected to result in imprecise consonants and dis-
torted vowels. Caruso and Burton (1987) observed
that ALS speakers and asymptomatic speakers ex-
hibited significant differences in stop-gap dura-
tions as well as in vowel durations.

Yunusova et al. (2016) have also previously
shown a correlation between speaking rate and
physiological measures of ALS, specifically ALS
Functional Rating Scale (ALSFRS).> Our own
work differs from this prior work in that we de-
fine divergence in terms of a wider range of speech
characteristics—beyond speaking rate—and then
demonstrate that divergence measures correlate
with physiological measures of ALS.

3 Data: Transcriptions and Phonological
Annotations

The data for our experiments consist of recorded
speech of 16 recruited subjects with ALS in a clin-
ical setting, collected quarterly for each subject.
The subjects range between 35-74 years of age.
Their age distribution is as follows: one subject
in the 30s, two subjects in their 40s, one subject
in their 50s, five subjects in their 60s, and seven
subjects in their 70s. Out of the 16 subjects, only
one of them is female, the other 15 subjects are
male. In terms of race of the subjects, we have
the following distribution: White (12), Asian (1),
African-American (1), Not reported (2).

The criteria for the recruitment of a particular
subject are that the subject: (1) has been diagnosed
with ALS; (2) is a native monolingual speaker
of American English; (3) has bulbar involvement
identified during initial ALS inpatient evaluation;
(4) has a forced vital capacity (FVC) of greater
than 50% of the expected value for age; and (5) has
an ALSFRS-R score* of 40 or greater. Excluded
from the study are those who have received a diag-
nosis of dementia, FVC of less than 50%, inability
to speak, or inability to follow directions.

As part of their standard clinical care, each
ALS-diagnosed subject reports for a quarterly

3 ALSFRS is a standard questionnaire-based scale to mea-
sure functionality of a person in carrying out daily activities,
see (Cedarbaum and Stambler, 1997; Brooks, 1997).

*ALSFRS-R is a revised ALSFRS that incorporates as-
sessments of respiratory function (Cedarbaum et al., 1999).
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evaluation during which the following measures
are collected: Forced Vital Capacity (FVC;
(Brinkmann et al., 1997; Czaplinski et al,
2006)), Penetration-Aspiration Scale (a paper-
pencil screen; (Rosenbek et al., 1996)), ALSFRS-
R (Cedarbaum and Stambler, 1997; Cedarbaum
et al., 1999), and Speech Intelligibility Test (SIT
(Beukelman et al., 2011; Yorkston et al., 2007)).

1. She held your dark suit in greasy wash water all year.
2. Don’t ask me to hold an oily rag like that.

3. The big dog loved to chew on the old rag doll.

4. Chocolate and roses never fail as a romantic gift.

Table 1: Four TIMIT Sentences

Speech recordings of the same four sentences,
that have been preselected, are made during each
(quarterly) visit of each of the patients.’ The four
sentences, presented in Table 1, are selected from
the Texas-Instrument/MIT (TIMIT) corpus (Garo-
folo et al., 1993) and were designed to be pho-
netically rich, thus providing solid coverage of the
phonetic space from each subject.

The data also include recordings of four control
(asymptomatic) subjects, two of whom are female
and two are male, reading the same four TIMIT
sentences in the same setting as the symptomatic
subjects. These are used as the baseline speech
against which divergence scores (defined in the
next section) are calculated for the ALS symp-
tomatic speech.

Our hypothesis is that a higher divergence is in-
dicative of the progression of the ALS condition.
This study focuses on divergence with respect
to asymptomatic speech—taken as a baseline—
to determine whether the divergence is speaker
dependent or whether it is more generally in-
dicative of ALS progression. If the latter, this
would help diagnose patients for which no previ-
ous/longitudinal data is available.’

ALS speech data for the 16 subjects was tran-
scribed and annotated via speech-analysis soft-
ware called Praat (Boersma and van Heuven,
2001) for the 14 phonological characteristics
enumerated in Table 2. These characteristics

3 All uses of these data as reported in this paper have been
approved by the relevant Institutional Review Board (IRB).

®Note the TIMIT sentences 1 and 2 are slightly different
from the original TIMIT sentences; the original TIMIT sen-
tences are as follows: (1) She had your dark suit in greasy
wash water all year; (2) Don’t ask me to carry an oily rag
like that.

"However, as longitudinal data becomes available to us
in our future work, we will also look at divergence based on
speaker dependent baselines.



Speaker level characteristics
monopitch Voice lacks inflectional changes; pitch does not change much.
monoloudness | Voice for which the volume/loudness does not change, hence lacking normal variations in loudness.
Speech/span related characteristics

harshness Voice seems harsh, rough and raspy—sometimes referred to as pressed voice—similar to what hap-
pens when a person talks while lifting a heavy load.

imprecise Consonant sounds lack precision. There may be slurring, inadequate sharpness, distortions, lack of

consonants crispness, and clumsiness in transitioning from one consonant to another. For example, a “w” may
be produced instead of a “b”.

distorted Vowel sounds distorted throughout their total duration. For example, a “a” may be produced instead

vowels of “1”.

prolonged A phoneme (i.e., a consonant or a vowel) is prolonged, i.e., its sound (when it is produced) continues

phonemes over an unusual period of time.

inappropriate | Pauses that are produced not at syntactic or prosodic boundaries.

silences

hypernasality | Vowels that are supposed to be non-nasalized are instead nasalized in speech.

strained or Tenseness in voice (as with overall muscular tension). Perceived as increased effort, may seem tense

strangled or harsh as if talking and lifting at the same time or as if talking with breath held.

quality

breathiness Voice seems breathy, weak and thin. May seem like a sighing sound. There may be non-modulated
turbulence noise in the produced sound, i.e., audible air escape in voice or bursts of breathiness.

audible inspi- | Noisy breathing and wheezing may accompany inhaling. There may be a harsh, crowing, or vibra-

ration/stridor | tory sound of variable pitch resulting from turbulent air flow caused by partial obstruction of the
respiratory passages.

unusual stress | Speech sounds where most important parts of a sentence may be de-stressed or all parts of a sentence
are stressed as if all are important or speech sounds may be perceived as robotic, with the same
stress—where there is no variation in stress throughout sentence/phrase/word/syllable.

hoarseness Abnormal voice changes, where voice may sound breathy, raspy, strained, or there may be changes
in volume (loudness) or pitch (how high or low the voice is).

vocal fry Popping or rattling sound of a very low frequency—also known as a creaky voice.

Table 2: Phonological characteristics annotated in symptomatic speech

were pre-identified mostly based on the clini-
cal research literature on ALS speech, e.g., see
Duffy (2013): p248. The phonological annota-
tions were made by two specialists: one of whom
was a phonologist and the other was a speech ther-
apist with experience working with ALS speakers.

Two classes of phonological characteristics
served as the basis of annotations, each with a set
of primitive phonological features: speaker level
characteristics and speech/span related character-
istics. Speaker level characteristics refer to fea-
tures in speech that are more characteristic of a
specific speaker’s voice—independent of individ-
ual sounds/spans, e.g., monopitch which indicates
the lack of inflectional changes in voice. These
were annotated only once for each speaker.

Speech/span related characteristics, on the
other hand, refer to features in speech that are
characteristic of a specific sound or are observed
for a portion of speech—as opposed to features
that are characteristic of the voice itself. For ex-
ample, the feature imprecise consonants refers to
the portion of speech where a specific consonant
is produced imprecisely, it may involve slurring
or inadequate sharpness, e.g., producing a “w”
instead of a “b”. For these annotations, spans
in speech were marked over which these features
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were observed.

For each of these characteristics, the annotators
also assigned a 1-10 Likert scale (Likert, 1932)
rating to indicate the severity of the characteris-
tic when it is observed, where 10 indicates “very
severe” and 1 indicates “negligible.”

4 Divergence in Speech

Understanding the relationship between impaired
speech and asymptomatic speech is facilitated
by measuring the degree to which symptomatic
speech diverges from a baseline. For the cur-
rent study, asymptomatic speech—which serves
as a baseline—was created from a combination
of recordings from asymptomatic speakers as de-
scribed in Section 3. Simplistically, the degree of
divergence is defined as the sum of the changes in
a speech utterance from its asymptomatic equiv-
alent. For a correlation to be supported, a large
number of changes in speech (i.e., a strong diver-
gence from asymptomatic speech) would corre-
spond to advanced progression of the disease. The
relationship between impaired speech and asymp-
tomatic speech is characterized in terms of mea-
surable combinations of phonological characteris-
tics that are indicative of the degree to which the
two diverge. The degree of divergence can be used



as a diagnostic tool at regular intervals for check-
ing the severity of physiological changes.

Multiple methods have been applied in order to
calculate divergence scores:

1. Feature count based divergence score: Fea-
ture count refers to the number of character-
istics observed in the speech samples.® The
Feature count based divergence score for each
ALS speaker is the difference between the fea-
ture count for the ALS speech and the feature
count for the control asymptomatic speech.
Four variations of this score are used based on
how the feature count for the control asymp-
tomatic speech is obtained:

(a) Average feature count for controls: It is
assumed that asymptomatic speakers may
display characteristics identified in Table 2
but to a much smaller extent. Thus, taking
a simple average of the feature count for
control speakers is taken to be most rep-
resentative of all asymptomatic speakers.
The feature count for the control asymp-
tomatic speech is the average of the feature
count for all the control speakers.

(b) Minimum feature count for controls:
The control speaker with the minimum
number of characteristics in his/her speech
is assumed to be the most asymptomatic.
Hence, the feature count for the control
asymptomatic speech is the minimum of
the feature counts for all control speakers.

(c) Gender dependent average feature
count for controls: The presence (or
absence) of characteristics may be de-
pendent on the gender of the speaker. To
calculate divergence scores, it is best if
speakers of the same gender are compared.
Hence, the feature count for the control
asymptomatic speech is the average of the
feature count for all the control speakers
of the same gender as the ALS speaker.

(d) Gender dependent minimum feature
count for controls: It is assumed the con-
trol speaker with the minimum number
of characteristics in his/her speech is the
most asymptomatic, but the presence (or
absence) of characteristics may be gender
dependent. To calculate divergence scores,
it is best if speakers of the same gender

8The counts from the two annotators were combined to-
gether in five different ways described in Section 5.1.

are compared. Hence, the feature count
for the control asymptomatic speech is the
minimum of the feature count for all the
control speakers of the same gender as the
ALS speaker.

2. Total frequency based divergence score: For

each speaker, an observed frequency score is
computed as an aggregate of the frequencies
of all observed characteristics in the speech of
the speaker.” The average of the observed fre-
quency score of both the annotators for a given
speaker is taken as the frequency score for the
speaker. The divergence score for an ALS
speaker is the difference between the frequency
score for the ALS speech and the frequency
score for the control asymptomatic speech.
The same four variations of this score are ex-
amined as described in the case of Feature
count based divergence score, depending on
how the frequency score for the control asymp-
tomatic speech is obtained.

. Likert Scale rating based divergence score:

It is assumed that each of the characteristics
may be as indicative of the condition as other
characteristics in various ALS speakers. It is
also assumed that the severity of the charac-
teristics indicates progression of ALS. An ob-
served Likert score of the speech samples from
a speaker is taken to be an aggregate of the mul-
tiples of Likert Scale rating assigned by an an-
notator for each occurrence of a characteristic
with the weight of the characteristic (which is
uniformly taken to be 1 for all the character-
istics in the current analysis). A Likert score
for a speaker is calculated as an average of
the two annotators’ observed Likert scores of
the speech samples from the speaker. A Likert
Scale rating based divergence score for each
ALS speaker is then taken to be the difference
between the Likert score for the ALS speech
and the Likert score for the control asymp-
tomatic speech. The same four variations of
this score are examined as described in the case
of Feature count based divergence score, de-
pending on how the Likert score for the control
asymptomatic speech is obtained.

For each of the three divergence measures de-

fined above, a higher score indicates that the
patients speech diverges from an asymptomatic

For example, if a characteristic, say distorted vowels, is
observed 6 times, the frequency for distorted vowels is 6.



Spkr| %FVC-| %FVC-| Feature | Total fre- | Likert
SUP SIT count quency |scale
18 |79 88 -0.75 -5 52.5
9 77 78 4.25 7 53.25
1 77 77 0.25 -2.5 37.75
6 75 79 0.5 0.5 29.5
14 |66 41 4.5 10.25 83.5
10 |53 64 7 13.75 98.75
5 52 56 7.5 22 127.25
4 51 44 8.75 29.5 189.75
8 50 56 5.75 13.75 53.25
17 |50 52 4.25 16 150.25
2 38 78 9.25 87 593
11 |32 26 6.25 7 82.75
13 |29 46 9.25 36 263.46
19 |29 40 3.5 1.25 52.5
7 29 29 6.75 36.5 297.25
12 |25 26 4.75 12 123.25

Table 3: Physiological Scores (%FVC) and Di-
vergence Scores (D.S.) variant (d) for average of
all four utterances for ALS speakers. The feature
count was based on a union of features across the
two annotators. Total frequency and Likert scale
values were computed as a maximum across the
two annotators.

speech baseline more than would be indicated by
a lower score. Divergence scores are expected to
correlate with physiological measures of changes
associated with ALS. Increasing divergence scores
would thus serve as an indicator of the disease
progression, analogous to decreasing physiologi-
cal outputs (lower scores) associated with ALS—
thus, the two measures are expected to be nega-
tively correlated.

5 Results and Discussion

Table 3 presents two physiological assessment
scores (%0FVC-SUP and %FVC-SIT) and three di-
vergence scores (defined above) for the 16 ALS
speakers.!? The scores are sorted by %FVC-SUP.
The table indicates that the %FVC scores tend to
drop as the divergence scores go up. As expected,
a decrease in %FVC scores indicates disease pro-
gression, and similarly, a higher divergence score
indicates disease progression.

5.1 Dealing with differences in Annotations
to Calculate Divergence Scores

Since the nature of the annotated phonological
characteristics was such that multiple characteris-
tics might share various aspects of speech, anno-
tators were asked to mark all characteristics that

°Only the variant (d) for each of the divergence scores
computed using the three methods is presented in the table
to maintain clarity. Note variant (d) refers to the divergence
scores calculated with Gender dependent minimum feature
count for controls setting, as described in Section 4 above.
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Divergence Score Type | Correlation | p-value
Feature ct D.S.(d)-Union | 0.65 0.007
Feature ct D.S.(d)-Avg 0.58 0.017
Feature ct D.S.(d)-Max |0.58 0.018
Feature ct D.S.(d)-Min | 0.58 0.019
Feature ¢t D.S.(d)-|0.51 0.045
Intersection

Likert D.S.(a)-Max 0.49 0.055

Table 4: Correlations between the Physiological
Scores (%FVC) and Divergence Scores (D.S.) for
all four variants

seemed relevant to them. The general descriptions

provided in Table 2 were used as heuristics by the

annotators, providing additional help in identify-

ing the characteristics.!! In order to resolve dif-

ferences across annotations, we used five different

methods to combine the two sets of annotations.

Table 3 shows a representative combination of the

first case below for the feature count measure and

the third case below for both total frequency mea-

sure and Likert scale measure:

1. Union: The characteristics identified by both

the annotators were considered only once.

. Intersection: Only the features annotated by
both the annotators were considered.

. Max: The maximum of the two annotators’ fea-
ture counts was used.

. Min: Minimum of the two annotators’ feature
counts was used.

. Avg: An average of the two annotators’ feature
counts was used.

5.2 Association between Divergence Scores
and Physiological Scores

To determine whether there was an association be-
tween any or all of the divergence scores and the
physiological measures of ALS, we correlated the
divergence scores with the physiological assess-
ment scores, %FVC-SUP and %FVC-SIT, using
Pearson’s correlation coefficient. The results are
presented in Table 4. For simplicity, we report
the correlations in the table as —1 x (correlation).
Refer Section A for correlations with all the diver-
gence scores.

We observe that while divergence scores do not
seem to correlate with the %FVC-SIT score, they
do show a moderate correlation with the %FVC-

" Although these descriptions were somewhat coarse-
grained, the idea was to start at this level and to learn more
precise features associated with acoustic inputs correspond-
ing to these characteristics. These precise features are ex-
pected to be critical for automatic classification of speech
samples with respect to ALS progression and, correspond-
ingly, predictive of the physiological scores for patients.



SUP score (0.49 < r < 0.66) with moderate p-
values (p < 0.05). The stronger correlation effect
we observe with %FVC-SUP than with %FVC-
SIT may be due to higher difficulty in breathing
that a patient may experience when (s)he is in
supine position than in sitting position.

Consistent with the point above, patients with
other pulmonary conditions have also been re-
ported to experience higher difficulty in breathing
when in supine position than in sitting or standing
positions. Since the patients need to exert higher
effort to achieve the same result in supine position
than in sitting position, they may not be physio-
logically able to perform the same in the two po-
sitions, i.e., %FVC-SUP may be more sensitive
than %FVC-SIT to the condition’s progression.
Since speech symptoms have also been found to
be more readily apparent than other physiologi-
cal symptoms (Yorkston et al., 1993), this results
in a stronger correlation of the speech divergence
scores with %FVC-SUP than with %FVC-SIT.

The table also indicates that divergence scores
based on a simple measure—counts of features ob-
served in ALS speech—correlate even better with
%FVC-SUP scores than divergence scores that are
based on slightly more complicated measures such
as features’ frequency or the Likert Scale ratings.

6 Conclusion and Future Work

This paper has presented a case for viewing the
relationship between impaired speech and asymp-
tomatic speech as a divergence from a base-
line. Novel divergence measures have been devel-
oped for distinguishing asymptomatic speech from
symptomatic speech, and these have been tested
for correlations with physiological measures of
ALS progression.

These speech divergence measures are a first
step toward developing automated speech-based
assessments of progression of the ALS condition
that are both less expensive and less intrusive than
their physiological counterparts. The current ap-
proach has enabled the identification speech-based
measures that correlate well with other physiolog-
ical measures currently used to monitor the pro-
gression of the ALS condition. The next step is
to test if these measures can be used to predict the
values for the currently used physiological mea-
sures including %FVC.

Also, the current study is based on manual an-
notations provided by human specialist annota-
tors. Future research will involve exploration of
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approaches that can be trained to produce such an-
notations automatically. These could, in turn, be
used to calculate divergence scores and eventually
to predict values for other physiological measures.

The theoretical groundwork for developing
speech-based measures defines speech diver-
gence in terms of clinically-informed phonolog-
ical speech characteristics associated with ALS
symptomatic speech. We presented three methods,
with four variants apiece, to compute speech di-
vergence scores for symptomatic speech. We also
showed that speech divergence scores are indeed
correlated with physiological assessment scores
for the progression of the disease.

Future research will investigate other methods
to compute divergence between the symptomatic
and asymptomatic speech that yield even stronger
correlations with the physiological assessments
measures. For example, it would be useful to ex-
plore whether the proportion of speech that is af-
fected by the characteristics listed in Table 2 has
any relation to the progression of the disease. Di-
vergence scores that incorporate characteristics re-
lated to a proportion of the span are expected to be
strongly correlated with the progression of ALS.

Two possible variants of how one may com-
pute divergence scores based on such proportion-
related information are as follows:

(1) Take proportion to be the proportion of
speech that is affected by any of the characteris-
tics.!”> One may calculate a divergence score for
each ALS speaker as the difference between the
proportion of speech of the ALS speaker affected
by these characteristics and the proportion of con-
trols’ speech affected by these characteristics. An
average of the proportion in the annotators’ anno-
tations may be used for the calculation of the di-
vergence score.

(2) As a simple analytic, one may also con-
sider proportion-based divergence scores corre-
sponding to each of the characteristics for each
ALS speaker. This analytic may be useful for pro-
viding a direct relation between a specific charac-
teristic and the progression of the condition. How-
ever, it may also be useful to explore divergence
classes based on groupings of characteristics that
are similarly affected due to the progression of the
condition, if any.!3

12Note there may be overlapping spans for more than one
characteristics.

BFor the calculation of this variant, an average across the
portions of speech for which a characteristic is annotated may



Some characteristics may be grouped to further
explore divergences. Green et al. (2013) grouped
features according to the speech subsystem in-
volved (e.g., respiratory, phonatory, resonatory
and articulatory). A reviewer also mentioned that
gender-specific degree of severity of certain fea-
tures would be interesting to explore. For ex-
ample, there seems to be evidence that voicing
control is more vulnerable in male patients (Kent
et al., 1994). Such findings suggest that character-
istics such as gender and possibly age may also
need to be considered while developing speech
divergence-based measures.

In addition, for the current study, each of the
characteristics was treated uniformly with respect
to ALS. Future work will explore the hypothesis
that certain characteristics are more indicative than
others with respect to the progression of ALS.

Finally, while prior studies indicate that
prosodic recognition is not affected in ALS speak-
ers (Zimmerman et al., 2007), articulatory or
phonatory deficits might alter the correct produc-
tion of interrogative, imperative, or declariative
sentences (Congia et al., 1987). These may be
found to be useful in the development of speech-
based measures of ALS. Thus, future work will in-
vestigate the extent to which these variables would
be more or less difficult to analyze automatically.
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A Supplemental Material

The correlation results between each of the three
types of speech divergence scores with all of their
variants and the %FVC-SUP are presented in Ta-
bles 5, 6, and 7. As mentioned before, for sim-
plicity, we report the correlations in the tables as
—1 % (correlation).

Divergence Score Type Correlation | p-value

Feature ct D.S.(a)-Max 0.58 0.018

Feature ct D.S.(a)-Min 0.58 0.019

Feature ct D.S.(a)-Ave 0.58 0.017

Feature ct D.S.(a)-Union 0.65 0.007

Feature ct D.S.(a)-Intersection 0.51 0.045

Feature ct D.S.(b)-Max 0.58 0.018

Feature ct D.S.(b)-Min 0.58 0.019

Feature ct D.S.(b)-Ave 0.58 0.017

Feature ct D.S.(b)-Union 0.65 0.007

Feature ct D.S.(b)-Intersection 0.51 0.045

Feature ct D.S.(c)-Max 0.58 0.018

Feature ct D.S.(c)-Min 0.58 0.019

Feature ct D.S.(c)-Ave 0.58 0.017

Feature ct D.S.(c)-Union 0.64 0.007

Feature ct D.S.(c)-Intersection 0.50 0.045 Divergence Score Type Correlation | p-value

Feature ct D.S.(d)-Max 0.58 0.018 Likert Scale D.S.(a)-Max 0.49 0.055

Feature ct D.S.(d)-Min 0.58 0.019 Likert Scale D.S.(a)-Min 0.44 0.089

Feature ct D.S.(d)-Avg 0.58 0.017 Likert Scale D.S.(a)-Ave 0.47 0.068

Feature ct D.S.(d)-Union 0.65 0.007 Likert Scale D.S.(b)-Max 0.48 0.061
Feature ct D.S.(d)-Intersection 0.51 0.045 Likert Scale D.S.(b)-Min 0.43 0.095

Likert Scale D.S.(b)-Ave 0.46 0.074
Table 5: Correlations between the Physiological ﬁllii:: gz:;f, gg %%g 832 8832
Scores (%FVC) and Feature Count Based Diver- Likert Scale D.S.(c)-Ave 0.46 0.071
gence Scores (D.S.) for all four variants Likert Scale D.S.(d)-Max | 0.47 0.067
Likert Scale D.S.(d)-Min 0.43 0.094

Divergence Score Type Correlation | p-value Likert Scale D.S.(d)-Avg 0.46 0.076
Feature freq D.S.(a)-Max 0.45 0.077 . . .
Feature freq D.S.(a)-Min 0.42 0.103 Table 7: Correlations between the Physiological
Feature freq D.S.(a)-Ave 0.44 0.085 Scores (%FVC) and Likert Scale Based Diver-
Feature freq D.S.(b)-Max 045 0.077 gence Scores (D.S.) for all four variants

Feature freq D.S.(b)-Min 0.42 0.103

Feature freq D.S.(b)-Ave 0.44 0.085

Feature freq D.S.(c)-Max 0.45 0.083

Feature freq D.S.(c)-Min 0.42 0.106

Feature freq D.S.(c)-Ave 0.44 0.09

Feature freq D.S.(d)-Max 0.46 0.075

Feature freq D.S.(d)-Min 0.42 0.103

Feature freq D.S.(d)-Avg 0.45 0.083

Table 6: Correlations between the Physiological
Scores (%FVC) and Feature Frequency Based Di-
vergence Scores (D.S.) for all four variants
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Abstract

In clinical dictation, speakers try to be as
concise as possible to save time, often re-
sulting in utterances without explicit punc-
tuation commands. Since the end product
of a dictated report, e.g. an out-patient let-
ter, does require correct orthography, in-
cluding exact punctuation, the latter need
to be restored, preferably by automated
means. This paper describes a method for
punctuation restoration based on a state-
of-the-art stack of NLP and machine learn-
ing techniques including B-RNNs with an
attention mechanism and late fusion, as
well as a feature extraction technique tai-
lored to the processing of medical termi-
nology using a novel vocabulary reduction
model. To the best of our knowledge, the
resulting performance is superior to that
reported in prior art on similar tasks.

1 Introduction

Medical dictation has been a major instrument
in clinical settings to minimize the administrative
burden on physicians (Johnson et al., 2014; Ham-
mana et al., 2015; Hodgson and Coiera, 2016).
Rather than having to fill forms in electronic med-
ical record systems (EMRs) or typing out-patient
letters, such labor is often outsourced to medical
transcription providers, many of which make use
of automated speech recognition (ASR), coupled
with a manual correction step, to increase effec-
tiveness and speed of transcription (Salloum et al.,
2017). Despite the fact that medical dictation re-
duces time physicians spend on clinical documen-
tation substantially, an average dictation still takes
about three minutes (Edwards et al., 2017). In an
attempt to dictate as efficiently as possible, often
physicians (a) speak extremely fast, (b) use pre-
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dictated paragraphs (so-called physician normals),
(c) make massive use of abbreviations, and (d) in-
clude very limited (if any) instructions regarding
formatting and punctuation.

While the ASR system is in charge of turning
spoken words into their textual representation, a
sophisticated NLP unit, the post-processor, takes
care of formatting and structuring the output to
produce a draft resembling the out-patient letter
as well as possible. Among other responsibilities
(such as formatting numerical expressions, dates,
section headers, etc.), the post-processor is also
charged with restoring punctuation in the letter’s
narrative. This paper focuses on the automated
punctuation restoration in clinical reports, draw-
ing on the latest advances in the NLP sector.

To achieve best possible results in this study, we
paid particular attention to the specific challenges
faced in medical texts. Foremost among these is a
large domain-specific vocabulary, which makes it
difficult if not impossible to apply tools developed
for general-domain text. When building a system
from scratch, however, several factors conspire to
make it hard to obtain enough training data: the
large medical vocabulary increases problems re-
lated to data sparsity and the handling of out-of-
vocabulary (OOV) terms; the data often contain
sensitive information and have restricted access or
availability; and modern methods, such as neu-
ral networks as used here, typically require large
amounts of data.

We overcame these issues by developing a text
pre-processing strategy to reduce vocabulary size,
collapsing particular roots and exploiting the fact
that many medical terms are built from relatively
few morphemes. Our method, which we call the
vocabulary reduction model, effectively allows the
punctuation restoration neural network to focus
on morphosyntactic features of words rather than
their full semantic representation, as usually cap-
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Normalized Text Reduced Text
Set types | OOVs | tokens types tokens PERIOD | COLON | COMMA
Training || 57,046 | w/a | 15,886,158 || 11,766 | 15,933,001 | 1,803,626 | 631,452 | 760,444
Dev 28500 | 1.561 | 2.243.187 | 10321 | 2.248.305 | 268.374 | 89.647 | 111,571
Blind Test || 31,806 | 3,108 2,944787 | 10,767 2,952,873 325,549 | 103,693 | 127,895

Table 1: Corpus statistics after normalization and vocabulary reduction. No OOVs are reported on the
reduced text since the vocabulary reduction algorithm will map OOVs to classes. The last three columns

show the counts of each punctuation tag per set.

tured by word embeddings, being less important
to the placement of punctuation.

After reviewing the prior art in the field of punc-
tuation restoration in Section 2, we describe the
corpus used in this study in Section 3. The sys-
tem’s general architecture based on bidirectional
recurrent neural networks with attention mecha-
nism and late fusion is discussed in Section 4, fol-
lowed by Section 5 providing details on the vo-
cabulary reduction model. Evaluation results are
covered in Section 6, and conclusion and future
outlook in Section 7.

2 Related Work

Early efforts in this field used hidden-event n-
gram language modeling to predict where punc-
tuation should be inserted (Stolcke et al., 1998;
Beeferman et al., 1998). Numerous other strate-
gies have also been devised: combining n-grams
with constituency parse information (Shieber and
Tao, 2003); maximum entropy using n-gram and
part-of-speech features (Huang and Zweig, 2002);
conditional random fields (CRFs) (Ueffing et al.,
2013); feed-forward neural networks and CRFs
on n-gram and lexical features (Cho et al., 2015);
even reframing the problem as monolingual ma-
chine translation (Peitz et al., 2011).

Most recently, it has been demonstrated that re-
current neural networks can restore punctuation
very effectively (Tilk and Alumie, 2015, 2016).
Such methods are promising because they should
be able to handle long-distance dependencies that
are missed by other methods.

There has been little work on punctuation
restoration in the medical domain specifically.
While using pauses showed to help in punctua-
tion restoration for rehearsed speech such as TED
Talks (Tilk and Alumiée, 2016), Deoras and Fritsch
(2008) note that medical dictations pose a particu-
lar challenge because the speech is often delivered
rapidly and without typical prosodic cues, such as
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pauses where one would write commas or other
punctuation. Thus, although acoustic information
has been successfully incorporated for other do-
mains (Huang and Zweig, 2002; Christensen et al.,
2001), the same may not be feasible for medical
text, so it is especially desirable to have a reliable
text-only method.

3 Corpus

The corpus we are using in this study is composed
of 32,275 medical reports (i.e., out-patient letters),
which we converted into a sequence of tokens with
punctuation as tags (since they are the most rel-
evant to medical dictations, we focused on three
punctuation marks: colon, comma, and period,
represented in the tag set { COLON, COMMA, PE-
RIOD}). We randomly split our corpus into train-
ing set, development set, and blind test set. De-
tailed corpus statistics are given in Table 1.

To reduce the size of the vocabulary, we per-
formed two layers of text preprocessing. First,
we performed several text normalization steps
such as converting all digits to “D”, normalizing
numbers, dates, and times into familiar formats
(e.g., “D.D”, “DD/DDDD”, “DD/DD”, “DD/D-
D/DDDD”, “DD:DD”), as well as other tokens of
the medical domain into normalized formats (e.g.,
“DDD/DD” for blood pressure, “ID-1D” for lum-
bar spinal discs, and “q.D+h” meaning “every D+
hours”). Normalization also included lowercasing,
unifying abbreviations (e.g., “p.r.n” and “p.r.n.”),
and performing simple segmentation (e.g., split-
ting “’s” from a word). Second, we ran a vo-
cabulary reduction algorithm, as detailed in Sec-
tion 5, that maps infrequent and OOV words to
word classes. The combination of these two lay-
ers dramatically reduced the vocabulary size, as
shown in Table 1.
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Figure 1: Neural network design for punctuation
restoration. The diagram shows an input context
for the word z; and the stack of layers that result
in the tag y; representing the punctuation decision
for x;.

4 The Neural Network Model

We define punctuation restoration as a tagging
problem. We try to tag every word in the input
sequence with one of four tags: {NONE, COLON,
COMMA, PERIOD}. Tagging a word by a punctua-
tion means that the punctuation should be inserted
after this word, while tagging with NONE means
that the word does not have a punctuation after it.
Our neural network approach is based on the work
of Tilk and Alumée (2016). Inspired by Bahdanau
et al. (2016), our deep neural network model uses
a bidirectional recurrent neural network (B-RNN)
(Schuster and Paliwal, 1997) with gated recurrent
units (Cho et al., 2014). B-RNNs help in learn-
ing long range dependencies on the left and right
of the current input word. The B-RNN is com-
posed of a forward RNN and a backward RNN that
are preceded by the same word embedding layer.
A sliding window of 256 words are passed to the
shared embedding layer as one-hot vectors.

On top of the B-RNN, we stack a unidirec-
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tional RNN with an attention mechanism (Bah-
danau et al., 2016) to assist in capturing relevant
contexts that support punctuation restoration de-
cisions. Finally, we use late fusion (Wang and
Cho, 2015) to combine the output of the atten-
tion mechanism with the current position in the
B-RNN without interfering with its memory.

5 The Vocabulary Reduction Model

To improve the modeling of rare words and to deal
with OOV words in the test and development sets,
we implemented a step that maps rare words to
common word classes, reducing the overall size
of the vocabulary. This vocabulary reduction al-
lows us to reduce the number of model parame-
ters, which is crucial for fast decoding in a live
recognizer.

Table 2 shows examples of prefixes and suffixes
that capture the semantic and morpho-syntactic in-
formation of infrequent words in our training data
such as medical terminology and proper names.
For every input word consisting of alphabetical
characters only, our vocabulary reduction algo-
rithm goes through the prefix and suffix lists start-
ing from the longer affixes to the shorter ones and
tries to match them to the beginning or end of
the word, while ensuring that the stem is at least
four letters long. If the word starts with a prefix
p+ of the prefix list we replace it with “pAAAA”
(where “AAAA” represents an alphabetical stem).
If it starts with a suffix +q, we replace it with
“AAAAq”. Finally, if the word matches a pre-
fix p+ and a suffix +q, we split it into two to-
kens “pAA+" and “+AAq”, respectively, to ensure
that the information in them gets modeled sepa-
rately. Every rare word consisting of alphabeti-
cal characters only that does not match any suffix
or prefix is replaced with a token that represents
its length range. The length range is computed
with a step of five characters resulting in tokens
like AAAA_S for words shorter than five charac-
ters, AAAA_10 for words shorter than ten char-
acters, etc. For example, “angiotensinconvertin-
genzyme” is replaced with AAAA_30. All other
rare words (e.g., “tlcnOm0”) are replaced with the
token “RARE”. These handcrafted rare classes al-
low us to increase the threshold for considering a
word rare. This technique not only significantly
reduces the size of the vocabulary, but also allows
us to better model rare classes with a higher num-
ber of tokens.



Size | Prefix

Suffix

4 inte+, anti+, post+, tran+, over+, intr+, peri+,
hype+, para+, neur+, hypo+, micr+, rein+,
mult+, card+, comp+, retr+, reco+, self+,
gran+, extr+, medi+, hemi+, well+, semi+,
endo+, radi+, hemo+, fibr+, oste+, elec+

+tion, +ions, +type, +ness, +ized, +date,
+able, +gery, +tive, +sult, +tomy, +ated,
+tory, +sion, +ates, +ular, +ical, +osis,
+ment, +nary, +rate, +ings, +arge, +onal,

+itis, +ents, +like, +lity, +ance, +berg

3 non+, pre+, per+, pro+, mar+, sub+, sch+,

+ing, +ion, +ted, +ate, +lly, +ive, +tic, +ers,

str+, tri+, ben+

+ble, +ies, +ity, +cal, +man, +sis, +son, +ial,
+ous, +ell, +ary, +lar, +tes, +ton, +dez

2 re+, de+, mc+, un+, le+, la+, vi+

+ed, +er, +es, +al, +ry, +te, +ic, +ly, +le

Table 2: Examples of affixes of medical terminology and proper names that capture the semantic and/or
morpho-syntactic information of infrequent words in our training data.

Punctuation | Precision | Recall | F-Score
COLON 98.6% 98.6% | 98.6%
CoMMA 84.0% 82.2% | 83.1%
PERIOD 96.1% 96.4% | 96.3%
Overall 94.2% | 94.0% | 94.1%

Table 3: Evaluation of punctuation restoration per-
formance on the blind test set.

We replace a word with its rare class whenever
we find it 20 or fewer times in the training data,
and we perform the affix-based replacement de-
scribed above whenever the word occurred less
than 100 times. These thresholds were tuned on a
held-out development set. Running this algorithm
on top of the normalized text results in lowering
the vocabulary size in our training data to 11,766
types, meaning that four out of five types are re-
placed with a class.

6 Evaluation

For the present study, we used Keras with Tensor-
Flow backend (Chollet, 2015; Abadi et al., 2016;
Chollet, 2017). We evaluated on the blind test set
by passing the whole set to our system as a se-
quence of about three million tokens without any
indication of beginning or end of sentence, para-
graph, or report. All words were lowercased, as
described earlier, to avoid giving out any hint of
sentence or section header start or end. We report
the results in Table 3.

We achieve 96.3% F-Score on periods, which
we consider the most important as they define sen-
tence boundaries. The latter are crucial for vir-
tually any subsequent NLP process, such as au-
tomatic coding of medical reports (Suendermann-
Oeft et al., 2016).

The second most important punctuation type in
medical reports is colons, as they define section
headers and, thus, help format the report structure.
We achieve 98.6% F-Score on colons.

Finally, we get 83.1% F-Score on commas, the
hardest tag to predict due to human inconsistency
in using them. This inconsistency affects the ac-
curacy of the training data as well as the fairness
in the evaluation against the test set. The overall
performance of the system on all tags is 94.1% in
terms of F-Score. Refer to Table 4 for examples of
our system’s output.

7 Conclusion and Future Work

Although prior work on punctuation restoration
has used different corpora from the work pre-
sented in this paper, our result (F-Score 94.1%)
compares very favorably with previous publica-
tions. For example, Cho et al. (2015) achieve an
F-Score of 61.8% on a meeting and lecture corpus,
Tilk and Alumée (2016) produce 64.4% on TED
talk transcripts, and Ueffing et al. (2013) report
an F-Score of 66.8% on one of Nuance’s in-house
dictation corpora.

While we have tested the performance of the
presented punctuation restoration algorithm on
naturalistic medical dictations, we have not yet
measured the impact the speech recognizer’s word
error rate has on the F-Score, a task we plan to
address in the near future. We are also inter-
ested to learn whether analyzing the speech wave-
form and characteristic pauses and prosodic pat-
terns in medical dictations can be exploited in a
hybrid speech/text punctuation restoration system
to enhance accuracy even further. We also plan
to replace the vocabulary reduction model by fus-
ing a morphology-aware neural network such as a
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Input ... review of systems general positive for fatigue excessive perspiration feeling sick ...

Gold ... review of systems: general: positive for fatigue, excessive perspiration, feeling sick. ...

Punctuated | ... review of systems COLON general COLON positive for fatigue COMMA excessive perAA+ +AAtion COMMA
feeling sick PERIOD ...

Input ... chronic pruritus dermatology felt that this was neurodermatosis and neurotic excoriations ...

Gold ... chronic pruritus. dermatology felt that this was neurodermatosis and neurotic excoriations. ...

Punctuated | ... chronic pruritus PERIOD deAAAA felt that this was neurAA+ +AAosis and neurAA+ +AAtic AAAAions
PERIOD ...

Input ... it is available review of systems positive for still some ongoing lower extremity weakness tremulousness and
unsteadiness otherwise review of ...

Gold ... it is available. review of systems: positive for still some ongoing lower extremity weakness, tremulousness
and unsteadiness. otherwise, review of ...

Punctuated | ... it is available PERIOD review of systems COLON positive for still some ongoing lower extremity weakness
COMMA AAAAness and unAA+ +AAness PERIOD otherwise COMMA review of ...

Input ... severe clinical depression including hopelessness helplessness worthlessness difficulty focusing concentra-
tion and a lot of thoughts of death and dying ...

Gold ... severe clinical depression including hopelessness, helplessness, worthlessness, difficulty focusing, concen-
tration, and a lot of thoughts of death and dying. ...

Punctuated | ... severe clinical depression including AAAAness COMMA AAAAness COMMA AAAAness COMMA diffi-
culty AAAAing COMMA concentration COMMA and a lot of thoughts of death and dying PERIOD ...

Input ... is reasonable we will optimize his medications by adding low dose angiotensinconvertingenzyme inhibitors
which he currently is not on if the ...

Gold ... is reasonable. we will optimize his medications by adding low dose angiotensinconvertingenzyme inhibitors,
which he currently is not on. if the ...

Punctuated | ... is reasonable PERIOD we will optimize his medications by adding low dose AAAA_30 inhibitors COMMA
which he currently is not on PERIOD if the ...

Table 4: Examples of the output of our system on word sequences of the input. The first example
shows the correct handling of consecutive colons indicating a section header and a subsection header.
The second example shows the preprocessing of infrequent medical terminology like “neurodermato-
sis”, “neurotic”, and “excoriations” by capturing their semantic and part-of-speech information. The
third and fourth examples emphasize the case of parallelism captured by mapping “tremulousness and
unsteadiness” to “AAAAness and unAA+ +AAness” and “hopelessness helplessness worthlessness™ to
“AAAAness AAAAness AAAAness”, thus predicting commas when needed since the meaning is ir-
relevant to the punctuation task. The fourth example also shows the correct prediction of coordinated
lists, separating them with commas. The final example presents the mapping of a very long word, “an-
giotensinconvertingenzyme”, into “AAAA _30”, which reduces the confusion of the network and results
in the correct prediction.
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Abstract

Detecting negated concepts in clinical texts
is an important part of NLP information
extraction systems. However, generaliz-
ability of negation systems is lacking, as
cross-domain experiments suffer dramatic
performance losses. We examine the per-
formance of multiple unsupervised domain
adaptation algorithms on clinical negation
detection, finding only modest gains that
fall well short of in-domain performance.

1 Introduction

Natural language processing applied to health-
related texts, including clinical reports, can be valu-
able for extracting information that does not exist
in any other form. One important NLP task for clin-
ical texts is concept extraction and normalization,
where text spans representing medical concepts
are found (e.g., colon cancer) and mapped to con-
trolled vocabularies such as the Unified Medical
Language System (UMLS) (Bodenreider and Mc-
Cray, 2003). However, clinical texts often refer
to concepts that are explicitly not present in the
patient, for example, to document the process of
ruling out a diagnosis. These negated concepts, if
not correctly recognized and extracted, can cause
problems in downstream use cases. For example, in
phenotyping, a concept for a disease (e.g., asthma)
is a strong feature for a classifier finding patients
with asthma. But if the text ruled out asthma occurs
and the negation is not detected, this text will give
the exact opposite signal that its inclusion intended.

There exist many systems for negation detection
in the clinical domain (Chapman et al., 2001, 2007,
Harkema et al., 2009; Sohn et al., 2012; Wu et al.,
2014; Mehrabi et al., 2015), and there are also a
variety of datasets available (Uzuner et al., 2011;
Albright et al., 2013). However generalizability of
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negation systems is still lacking, as cross-domain
experiments suffer dramatic performance losses,
even while obtaining F1 scores over 90% in the
domain of the training data (Wu et al., 2014).

Prior work has shown that there is a problem
of generalizability in negation detection, but has
done little to address it. In this work, we describe
preliminary experiments to assess the difficulty of
the problem, and evaluate the efficacy of existing
domain adaptation algorithms on the problem. We
implement three unsupervised domain adaptation
methods from the machine learning literature, and
find that multiple methods obtain similarly modest
performance gains, falling well short of in-domain
performance. Our research has broader implica-
tions, as the general problem of generalizabiliy
applies to all clinical NLP problems. Research in
unsupervised domain adaptation can have a huge
impact on the adoption of machine learning-based
NLP methods for clinical applications.

2 Background

Domain adaptation is the task of using labeled data
from one domain (the source domain) to train a
classifier that will be applied to a new domain (the
target domain). When there is some labeled data
available in the target domain, this is referred to
as supervised domain adaptation, and when there
is no labeled data in the target domain, the task
is called unsupervised domain adaptation (UDA).
As the unsupervised version of the problem more
closely aligns to real-world clinical use cases, we
focus on that setting.

One common UDA method in natural language
processing is structural correspondence learning
(SCL; Blitzer et al. (2006)). SCL hypothesizes that
some features act consistently across domains (so-
called pivot features) while others are still informa-
tive but are domain-dependent. The SCL method
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combines source and target extracted feature sets,
and trains classifiers to predict the value of pivot
features, uses singular value decomposition to re-
duce the dimensionality of the pivot feature space,
and uses this reduced dimensionality space as an
additional set of features. This method has been
successful for part of speech tagging (Blitzer et al.,
2006), sentiment analysis (Blitzer et al., 2007), and
authorship attribution (Sapkota et al., 2015), among
others, but to our knowledge has not been applied
to negation detection (or any other biomedical NLP
tasks). One difficulty of SCL is in selecting the
pivot features, for which most existing approaches
use heuristics about what features are likely to be
domain independent.

Another approach to UDA, known as bootstrap-
ping or self-training, uses a classifier trained in the
source domain to label target instances, and adds
confidently predicted target instances to the train-
ing data with the predicted label. This method has
been successfully applied to POS tagging, spam
email classification, named entity classification,
and syntactic parsing (Jiang and Zhai, 2007; Mc-
Closky et al., 2006).

Clinical negation detection has a long history
because of its importance to clinical informa-
tion extraction. Rule-based systems such as
Negex (Chapman et al., 2001) and its successor,
ConText (Harkema et al., 2009) contain manually
curated lists of negation cue words and apply rules
about their scopes based on word distance and in-
tervening cues. While these methods do not learn,
the word distance parameter can be tuned by ex-
perts to apply to their own datasets. The DepNeg
system (Sohn et al., 2012) used manually curated
dependency path features in a rule-based system to
abstract away from surface features. The Deepen
algorithm (Mehrabi et al., 2015) algorithm also
uses dependency parses in a rule-based system, but
applies the rules as a post-process to Negex, and
only to the concepts marked as negated.

Machine learning approaches typically use su-
pervised classifiers such as logistic regression or
support vector machines to label individual con-
cepts based on features extracted from surround-
ing context. These features may include manually
curated lists, such as those from Negex and Con-
Text, as well as features intended to emulate the
rules of those systems, as well as more exhaustive
contextual features common to NLP classification
problems. The 2010 i2b2/VA Challenge (Uzuner
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et al., 2011) had an “assertion classification” task,
where concepts had mutually exclusive present,
absent (negated), possible, conditional, hypotheti-
cal, and non-patient attributes, and this task had a
variety of approaches submitted that used some
kind of machine learning. The top-performing
system (de Bruijn et al., 2011) used a multi-level
ensemble classifier, classifying assertion status of
each word with three different machine learning
systems, then feeding those outputs into a concept-
level multi-class support vector machine classifier
for the final prediction. In addition to standard
bag of words features for representing context, this
system used Brown clusters to abstract away from
surface feature representations. The MITRE sys-
tem (Clark et al., 2011) used conditional random
fields to tag cues and their scopes, then incorpo-
rated cue information, section features, semantic
and syntactic class features, and lexical surface
features into a maximum entropy classifier. Fi-
nally, Wu et al. (2014) incorporated many of the
dependency features from rule-based DepNeg sys-
tem (Sohn et al., 2012) and the best features from
the i2b2 Challenge into a machine learning system.

3 Methods

In this work, we apply unsupervised domain adap-
tation algorithms to machine learning systems for
clinical negation detection, evaluating the extent to
which performance can be improved when systems
are trained on one domain and applied to a new
domain. We make use of the (Wu et al., 2014) sys-
tem in these experiments, as it is freely available as
part of the Apache cTAKES (Savova et al., 2010)!
clinical NLP software, and can be easily retrained.

Unsupervised domain adaptation (UDA) takes
place in the setting where there is a source dataset
D, = {X,y}, and a rarger dataset D; = {X},
where feature representations X € RV*P for N
instances and D feature dimensions and labels
7 € RN. Our goal is to build classifiers that will
perform well on instances from Dj as well as Dy,
despite having no gold labels from D, to use at
training time. Here we describe a variety of ap-
proaches that we have implemented.

The baseline cTAKES system that we use is a
support vector machine-based system with L1 and
L2 regularization. Regularization is a penalty term
added to the classifier’s cost function during train-
ing that penalizes “more complex” hypotheses, and

"http://ctakes.apache.org



is intended to reduce overfitting to the training data.
L2 regularization adds the L2 norm to the classi-
fier cost function as a penalty and tends to favor
smaller feature weights. L1 regularization adds
the L1 norm as a penalty and favors sparse feature
weights (i.e., setting many weights to zero).
Before attempting any explicit UDA methods,
we evaluate the simple method of increasing regu-
larization. While regularization is already intended
to reduce overfitting, it may still overfit on a tar-
get domain since its hyper-parameter is tuned on
the source domain. In a real unsupervised domain
adaptation scenario it is not possible to tune this
parameter on the target domain, so for this work
we use heuristic methods to set the adapted regu-
larization parameter. We first find the optimal regu-
larization hyperparameter C' using cross-validation
on the source data, then increase it by an order
of magnitude and retrain before testing on target
data. For example, if we find that the best F1 score
occurs when C' = 1 for a 5-fold cross-validation
experiment on the source data, we retrain the classi-
fier at C' = 0.1 before applying to target test data.”
Changing this parameter by one order of magni-
tude is purely a heuristic approach, chosen because
that is how we (the authors) typically would vary
this parameter during tuning. Future work may ex-
plore whether this parameter on target data without
supervision, perhaps by using some information
about the data distribution in the target domain.
The first UDA algorithm we implement is struc-
tural correspondence learning (SCL) (Blitzer et al.,
2006). Following Blitzer et al. we select as pivot
features those features that occur more than 50
times in both the source and target data. Then, for
each data instance 7 in X, = {X; U X;}, and each
pivot feature p, we extract the non-pivot features of
1 (non-pivot features are simply all features not se-
lected as pivot features), z; = X [i, non-pivots],
and a classification target, y;[p] = [Xc[i,p] >
0.5].> For each pivot feature p, we train a linear
classifier on the (7, y;[p]) classification instances,
take the resulting feature weights, w,,, and concate-
nate them into a matrix W. We decompose W
using singular value decomposition: W = ULV 7T,
and construct # as the first d dimensions of U. This
matrix # represents a projection from non-pivot
features to a reduced dimensionality version of the

2Note that since C is the cost of misclassifying training
instances, increasing regularization means lowering C.

3We use [expr] to denote the indicator function, which
returns 1 if expr is true and 0 otherwise.

Test corpus
Train corpus | Seed | Stratified | Mipacq | i2b2
Seed 0.88 0.76 0.65 | 0.79
Stratified 0.66 0.83 0.67 | 0.79
Mipacq 0.73 0.78 0.75 | 0.85
i2b2 0.65 0.59 0.64 | 0.93

Table 1: Results (F1 scores) of baseline cross-
domain experiments. Bold diagonals indicate
in-domain results, which were obtained with 5-
fold cross-validation. Off-diagonal elements were
trained on source data and tested on target data.

pivot-feature space. At training and test time, fea-
tures are extracted normally, and non-pivot feature
values are multiplied by 6 to create correspondence
features in the reduced-dimensionality pivot space.
Following Sapkota et al. (2016), we experiment
with two methods of combining correspondence
features with the original features: All+New, which
combines all the original features with the corre-
spondence features, and Pivot+New which com-
bines only the pivot features from the original space
with the correspondence features.

The next UDA algorithm we implement is boot-
strapping. Jiang and Zhai (2007) introduced a va-
riety of methods for UDA, under the broad head-
ing of instance weighting, but the method they call
bootstrapping was the only one which does not rely
on any target domain labeled data. This method
creates pseudo-labels for a portion of the target data
by running a classifier trained only on source data
on the target data, and adding confidently classified
target instances to the training data, labeled with
whatever the classifier decided. Jiang and Zhai
experiment with the weights of these instances, ei-
ther giving higher weights to target instances or
weighting them the same as source instances. We
implemented a simpler version of bootstrapping
that does not modify instance weights, and adds
instances based on the initial classifier score (rather
than iteratively re-training and adding additional in-
stances). We allow up to 1% of the target instances
to be added.

In addition to adding the highest-scoring in-
stances, we also experiment with adding only high-
scoring instances from the minority class. In many
NLP tasks, including negation detection, the label
of interest has low prevalence, and there is a danger
that the classifier will be most confident on the ma-
jority class and only add target instances with that
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Source Target | None | 10xReg | SCL A+N | SCL P+N | BS-All | BS-Minority | ISF
Seed (L1) Strat 0.76 0.8 0.8 0.69 0.79 0.79 0.8
Mipacq | 0.65 0.66 0.69 0.6 0.69 0.7 0.69

i2b2 0.79 0.83 0.83 0.71 0.83 0.83 0.83

Strat (L1) Seed 0.66 0.66 0.66 0.58 0.66 0.67 0.66
Mipacq | 0.67 0.68 0.68 0.65 0.68 0.66 0.68

i2b2 0.79 0.79 0.79 0.71 0.79 0.8 0.79

Mipacq (L2) | Seed 0.73 0.59 0.73 0.71 0.73 0.71 0.73
Strat 0.78 0.76 0.78 0.71 0.78 0.79 0.78

i2b2 0.85 0.77 0.85 0.84 0.84 0.85 0.85

i2b2 (L1) Seed 0.65 0.72 0.72 0.67 0.72 0.72 0.72
Strat 0.59 0.68 0.69 0.62 0.68 0.68 0.68

Mipacq | 0.64 0.69 0.69 0.68 0.69 0.69 0.69

Average 0.71 0.72 0.74 0.68 0.74 0.74 0.74

Table 2: Results of unsupervised domain adaptation algorithms (F1 scores). None=No adaptation,
10xReg=Regularization with 10x penalty, SCL A+N is structural correspondence learning with all features
in addition to projected (new) features, SCL P+N is SCL with pivot features and projected features,
BS-All=Bootstrapping with instances of all classes added to source, BS-Minority=Bootstrapping with
only instances of minority class added to source, ISF=Instance similarity features.

label. We therefore experiment with only adding
minority class instances, enriching the training data
to have a more even class distribution.

The final UDA algorithm we experiment with
uses instance similarity features (ISF) (Yu and
Jiang, 2015). This method extends the feature
space in the source domain with a set of similarity
features computed by comparison to features ex-
tracted from target domain instances. Formally, the
method selects a random subset of K exemplar in-
stances from D; and normalizes them as &= ﬁ
Similarity feature k£ for instance ¢ in the source
data set is computed as the dot product X,[i] - €[k].
Following Yu and Jiang, we set K = 50 and con-
catenate the similarity features to the full set of
extracted features for each source instance at train-
ing. These exemplar instances must be kept around
past training time, so that at test time similarity
features can be similarly created for test instances.

4 Evaluation

Our evaluation makes use of four corpora of clini-
cal notes with negation annotations — i2b2 (Uzuner
et al.,, 2011), Mipacq (Albright et al., 2013),
SHARP (Seed), and SHARP (Stratified). We first
perform cross-domain experiments in the no adap-
tation setting to replicate Wu et al.’s experiments.*
One difference to Wu et al. is that we evaluate on

*See that paper for an discussion of corpus differences.
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the training split of the target domain — we made
this choice because the development and test sets
for some of the corpora are quite small and the
training data gives us a more stable estimate of per-
formance. We tune two hyperparameters, L1 vs.
L2 regularization and the values of regularization
parameter C, with five-fold cross validation on the
source corpus. We record results for training on all
four corpora, testing on all three target domains, as
well as a cross-validation experiment to measure
in-domain performance. Table 1 shows these re-
sults, which replicate Wu et al. in finding dramatic
performance declines across corpora.

In our domain adaptation experiments, we also
use all four corpora as source domains, and for each
source domain we perform experiments where the
other three corpora are target domains. This result
is reported in Table 2.

5 Discussion and Conclusion

These results show that unsupervised domain adap-
tation can provide, at best, a small improvement to
clinical negation detection systems.

Strong regularization, while not obtaining the
highest average performance, provides nominal im-
provements over no adaptation in all settings ex-
cept when the source corpus is Mipacq, in which
case performance suffers severely. Mipacq has two
unique aspects that might be relevant; first, it is
the largest training set, and second, it pulls docu-



ments from a very diverse set of sources (clinical
notes, clinical questions, and medical encyclope-
dias), while the other corpora only contain clinical
notes. Perhaps because the within-corpus variation
is already quite high, the regularization parameter
that performs best during tuning is already suffi-
cient to prevent overfitting on any target corpus
with less variation, and increasing it leads to un-
derfitting and thus poor target domain performance.
Future work may explore this hypothesis, which
must include some attempt to relate the within- and
between-corpus variation.

Four different systems all obtain the highest aver-
age performance, with BS-All (standard bootstrap-
ping), BS-Minority (bootstrapping with minority
class enrichment), structural correspondence learn-
ing (SCL A+N), and instance similarity features
(ISF) all showing 3% gain in performance (71%
to 74%). While the presence of some improve-
ment is encouraging, the improvements within any
given technique are not consistent, so that without
labeled data from the target domain it would not be
possible to know which UDA technique to use. We
set aside the question of “statistical significance,”
as that is probably too low of a bar — whether or
not these results reach that threshold, they are still
disappointingly low and likely to cause issues if
applied to new data.

In summary, selecting a method is difficult, and
many of these methods have hyper-parameters (e.g.,
pivot selection for SCL, number of bootstrapping
instances, number of similarity features) that could
potentially be tuned, yet in the unsupervised set-
ting there are no clear metrics to use for tuning
performance. Future work will explore the use of
unsupervised performance metrics that can serve
as proxies to test set performance for optimizing
hyperparameters and selecting UDA techniques for
a given problem.
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Abstract

The Precision Medicine Track in BioCrea-
tive VI aims to bring together the BioNLP
community for a novel challenge focused
on mining the biomedical literature in
search of mutations and protein-protein in-
teractions (PPI). In order to support this
track with an effective training dataset with
limited curator time, the track organizers
carefully reviewed PubMed articles from
two different sources: curated public PPI
databases, and the results of state-of-the-art
public text mining tools. We detail here the
data collection, manual review and annota-
tion process and describe this training cor-
pus characteristics. We also describe a cor-
pus performance baseline. This analysis
will provide useful information to develop-
ers and researchers for comparing and de-
veloping innovative text mining ap-
proaches for the BioCreative VI challenge
and other Precision Medicine related appli-
cations.

Introduction

Genomic technologies now make possible the
routine sequencing of individual genomes and such
data makes possible to understand how genetic var-
iations are distributed in healthy and sick popula-
tions. On the other hand, proteomics and metabo-
lomics approaches are charting the metabolic and
interactions maps of the cell. Such data deluge has
generated great expectations in the cure of human
diseases. Nonetheless, it is still difficult to predict
the phenotypic outcome of a specific genome and
designing the most appropriate treatment or estab-
lishing preventive programs. Linking allelic varia-
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tion and genomic mutations to protein-protein in-
teractions (PPI) is crucial to understand how cellu-
lar networks rewire and to support personalized
medicine approaches.

To date, no tool is available to facilitate the spe-
cific retrieval of such information that remains bur-
ied in the unstructured text within the biomedical
literature. Our goal is to foster the development of
text mining algorithms that specialize in scanning
the published biomedical literature and to extract
the reported discoveries of protein interactions
changing in nature due to the presence of a ge-
nomic variations or artificial mutations.

The Precision Medicine Track in BioCreative VI
is a community challenge that addresses this prob-
lem in the form of two tasks:

e Document Triage: Identification of relevant
PubMed citations describing mutations af-
fecting protein-protein interactions

e Relation Extraction: Extraction of experi-
mentally verified PPI pairs affected by the
presence of a genetic mutation

Traditionally biological database curators have
contributed to the various BioCreative challenges
(Hirschman, Yeh et al. 2005, Chatr-aryamontri,
Kerrien et al. 2008, Krallinger, Morgan et al. 2008,
Lu and Hirschman 2012) supporting the identifica-
tion of stages in the curation workflow suitable for
text mining applications and manually annotating
the training and test corpora. Because the manual
curation of the current exponentially growing body
of biomedical literature is an impossible task, the
insertion of robust text mining tools in the curation
pipeline represent a feasible and sustainable solu-
tion to this problem (Hirschman, Burns et al. 2012).

Proceedings of the BioNLP 2017 workshop, pages 171-175,
Vancouver, Canada, August 4, 2017. (©2017 Association for Computational Linguistics
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Functional dissection of the zinc finger and flanking domains of the Yth1 cleavage/polyadenylation
factor.
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Abstract

Yth1, a subunit of yeast Cleavage Polyadenylation Factor (CPF), contains five CCCH zinc fingers. Yth1 was previously shown to interact with
pre-mRNA and with two CPF subunits, Brr5/Ysh1 and the polyadenylation-specific Fip1, and to act in both steps of MRNA 3' end processing.
In the present study, we have identified new domains involved in each interaction and have analyzed the consequences of mutating these
regions on Yth1 function in vivo and in vitro. We have found that the essential fourth zinc finger (ZF4) of Yth1 is critical for interaction with
Fip1 and RNA, but not for cleavage, and a single point mutation in ZF4 impairs only polyadenylation. Deletion of the essential N-terminal
region that includes the ZF1 or deletion of ZF4 weakened the interaction with Brr5 in vitro. In vitro assays showed that the N-terminus is
necessary for both processing steps. Of particular importance, we find that the binding of Fip1 to Yth1 blocks the RNA-Yth1 interaction, and
that this inhibition requires the Yth1-interacting domain on Fip1. Our results suggest a role for Yth1 not only in the execution of cleavage and
poly(A) addition, but also in the transition from one step to the other.

Figure 1 A PubMed article describing a protein-protein interaction affected by mutation

As we prepared to create our corpus we faced
the common situation of limited reviewer time. We
took two steps to maximize this limited, valuable
resource: First, we reviewed annotations readily
available from manually curated PPI databases
(Orchard, Ammari et al. 2014) and marked the rel-
evant publications that could be used for the pur-
poses of this challenge; next, we expanded the
training set using a set of publically available text
mining tools (Kim, Kwon et al. 2012, Wei, Harris
etal. 2013) specifically for the retrieval of literature
reporting protein interaction and mutation data.

Both of these sets were manually reviewed and
categorized as: 1) Articles describing PPI and mu-
tations affecting those molecular interactions, 2)
Articles describing mutations and molecular inter-
actions, with no affect or no relation between the
two events, 3) Articles describing PPI, 4) Articles
describing mutations or genetic variation, and 5)
Articles not relevant for either molecular interac-
tion or mutation information. In addition, the data-
base extracted interactions were carefully reviewed
and validated in two important aspects: 1) the an-
notated PPI were described in the PubMed abstract
of the corresponding article, as opposed to the full
text, and 2) the extracted interactions were affected
by a mutation, and this was stated in the abstract.

All manually selected, categorized and carefully
reviewed articles make up a set of 4,082 PubMed
abstracts. All of these articles can be used for build-
ing machine learning methods and other innovative
applications for the Precision Medicine Track in
BioCreative V1. Of these, 598 PubMed articles are
annotated with specific interactions. This smaller

set can be used to develop algorithms for the Rela-
tion Extraction task and other similar biomedical
text mining problems.

We provide here a detailed description of the as-
sembly of this dataset and report the on-going ef-
forts of building the test corpus.

2 Training Corpus

The Precision Medicine track training corpus
was generated as a result of two data selection and
validation methods:

e Data repurposing

e Text mining triage and manual validation

These approaches are different and as noticed in
the article composition resulting from each of
them, they are both important contributors to this
dataset. Here we describe the procedure followed
in each of these approaches, starting with our anno-
tation guidelines and a detailed view of the corpus
characteristics. Figure 1 shows an example article
in our dataset.

2.1  Annotation guidelines

All selected articles were manually annotated to
answer these questions:
e Does this article describe experimentally
verified protein-protein interactions?

e Does this article describe a disease known
mutation or a mutational analysis experi-
ment?

o Are the database curated PPI pairs for this ar-
ticle mentioned in the abstract?
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Table 1 Training Set annotation and distribution amongst different categories

Curated data- Text mining tools Complete
Annotation Category base selected selected articles Training Set
articles (PPl set) (TM set)

True positives 1079 651 1,730 42%
True Negatives 55 322 377 9%
Negative, Yes PPIl, No Mutation 1538 82 1,620 40%
Negative, No PPI, Yes Mutation 136 87 99 2.4%
Negative, No PPI, No Mutation 12 120 256 6.3%

Total 2820 1262 4082 100%

o s the PPI affected by the mutation?

Then, based on the above annotations, articles
are carefully categorized as 1) True Positives, for
articles specifically describing PPI influenced by
genetic mutations, 2) True Negatives, for articles
describing both PPIs and genetic variation analysis
with no inference of relation between them, 3) arti-
cles containing PPI but no mutations, 4) articles
containing mutations but no PPI, and 5) articles
mentioning neither.

2.2 Curated Database article selection

The IntAct Molecular Interaction Database
(Orchard, Ammari et al. 2014) is a freely available,
open source database system and analysis tool for
molecular interaction data. It currently lists 14,584
manually annotated PubMed full-text articles with
720,711 molecular interactions for 98,289 different
interactors. The curation of these molecular inter-
actions is captured at a required level of detail and
frequent updates include mapping to binding re-
gions, point mutations and post-translational mod-
ifications to a specified sequence with a reference
protein sequence database.

A set of 2,852 articles, containing in-the-abstract
information about binding interfaces and mutations
influencing the interactions, was retrieved from In-
tAct and these articles went through a careful re-
view and validation round by an experienced cura-
tor. Each one of these articles was carefully consid-
ered for their suitability for the precision medicine
task.

A second manual validation round was then per-
formed on all positively annotated articles of the
first round. As a result, 598 articles were identified
as relevant for the Relation Extraction task, with

! https:/iwww.ncbi.nim.nih.gov/CBBresearch/Wil-
bur/IRET/PIE/
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experimentally verified interactions influenced by
mutations and with explicit interactors in the ab-
stract. All of these interactors were expressed with
both their UniProt ID and Gene Entrez ID. The
non-relevant articles were further categorized into
the more specific categories as described above.

2.3

The Text Mining approach used two well-known
publically available text mining tools: PIE the
search (Kim, Kwon et al. 2012) and tmVar (Wei,
Harris et al. 2013). PIE! the search is a web service
that provides an alternate way of querying PubMed
for biologists and database curators. The returned
articles are ranked based on their probability of de-
scribing protein-protein interactions, using a very
competitive algorithm and the winner of BioCrea-
tive [I ACT competition (Krallinger, Vazquez et al.
2011). tmVar? is another text mining tool that is the
current gold-standard for recognizing sequence
variants in PubMed literature. An article marked by
tmVar signals the presence of a sequence variant of
a mutation in the title and abstract.

These tools were used as follows:

e Step 1: PIE the search was used to select the
top scoring (for PPI) PubMed articles pub-
lished in the last 10 years. This method se-
lected over 13,000 articles.

Text Mining based article selection

Step 2. tmVar was used on the resulting set
of Step 1 to select all articles which had a se-
quence variant in the title or abstract. This
method selected around 1,200 articles.

2 https://www.ncbi.nlm.nih.gov/CBBre-
search/Lu/Demo/tmTools/#tmVar



Table 2 Document Triage Task results

Methods Avg. Prec. Precision Recall F1 Positive Negative Ratio
10-fold CV (PPI set) 0.7577 0.7184 0.6321 0.6725 1079 1741  38%
Validation (TM set) 0.6551 0.6210 0.6897 0.6536 651 611 52%
10-fold CV (all data) 0.7225 0.6891 0.6260 0.6561 1730 2352 42%

e Step 3. All articles in Step 2 were manually
annotated as described in the annotation
guidelines.

3 Results and Discussion

3.1 Precision Medicine Task Training Cor-

pus Characteristics

The Precision Medicine Task training corpus
contains 4,082 selected PubMed abstracts that
come from two different sources: curated databases
and text mining tool selection. It is important to see
the dataset as a whole and to notice the different
composition of classified articles coming from
both sources as detailed in Table 1.

In addition, we looked at the PIE score distribu-
tion of all articles in the dataset. We noticed that the
PubMed articles selected via text mining tools had
a higher PIE score average than the articles re-
trieved from curated databases. In particular, while
the PIE scores of the articles selected from the cu-
rated databases form a normal distribution, the
scores of the text mining selected articles are
skewed towards high scores.

On a different experiment, we ran the tmVar tool
on all curated database selected articles. Interest-
ingly, only 311 out of 1079 positives articles were
marked by tmVar.

Thus, if novel algorithm developers only gave
more importance to articles selected via text min-
ing tools, or only the text mining tools used in our
experiment, they risk biasing curators to only a par-
ticular set of articles. Innovative text mining tools
should make use of both sets of articles in order to
ensure a better coverage of curatable articles.

3.2

A baseline SVM method was designed using
unigram and bigram features from titles and ab-
stracts of the training corpus, as shown in the re-
sults in Table 2. A first experiment used articles
from the curated database for training in a 10-fold
cross validation (CV) setting, and tested on the text

Benchmark results and corpus use

mining selected articles. And a second experiment
mixed all articles in a 10-fold cross validation set-
ting. Results are detailed in Table 2.

The test dataset for BioCreative VI Precision
Medicine Track will be a set selected by database
curators. First articles will be retrieved via text
mining tools and then each article will be manually
evaluated by four experienced curators.

4  Conclusions and Public Availability

A vast amount of precision medicine related in-
formation can be found in published literature and
extracted by skilled domain expert curators. The
BioCreative VI Precision Medicine Track corpus
characteristics provide important insights on 1) un-
derstanding the structure of biological information
and why it is relevant for precision medicine pur-
poses, and 2) the best practices for designing com-
putational automatic methods capable of extracting
such information from unstructured text.

By releasing this data we aim to facilitate the cu-
ration of precision medicine related information
available in published literature. This corpus fos-
ters development of innovative text mining algo-
rithms that may help database curators in identify-
ing molecular interactions that differ based on the
presence of a specific genetic variant, information
which could be translated to clinical practice.

This data comes from two realistic, important
data sources: 1) articles retrieved from expert cu-
rated PPI databases, re-evaluated and found useful
for precision medicine purposes, and 2) articles re-
trieved via state-of-the-art text mining tools trained
to identify articles describing PPI and containing
identifiable sequence variants. Both sets of data
have slightly different, but useful characteristics
and as such, novel text mining tools need to use
both sources of information for best application in
this new domain.

The BioCreative VI Precision Medicine training
corpus will be available to task participants from
the BioCreative website and later to the whole sci-
entific community.
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Abstract

Relation extraction methods are essential
for creating robust text mining tools to
help researchers find useful knowledge in
the vast published literature. Easy-to-
use and generalizable methods are needed
to encourage an ecosystem in which re-
searchers can easily use shared resources
and build upon each others’ methods. We
present the Kindred Python package' for
relation extraction. It builds upon meth-
ods from the most successful tools in the
recent BioNLP Shared Task to predict
high-quality predictions with low com-
putational cost. It also integrates with
PubAnnotation, PubTator, and BioNLP
Shared Task data in order to allow easy de-
velopment and application of relation ex-
traction models.

1 Introduction

Modern biomedical research is beginning to rely
on text mining tools to help search and curate
the ever-growing published literature and to inter-
pret large numbers of electronic health records.
Many text mining tools employ information ex-
traction (IE) methods to translate knowledge dis-
cussed in free text into a form that can be eas-
ily searched, analyzed and used to build valuable
biomedical databases. Examples of applications
of IE methods include building protein-protein in-
teraction networks (Donaldson et al., 2003) and
automatically retrieving information about pro-
teins (Rebholz-Schuhmann et al., 2007).
Information extraction relies on several key
technologies including relation extraction. Rela-
tion extraction focuses on understanding the rela-
tion between two of more biomedical terms in a

"http://www.github.com/jakelever/kindred
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stretch of text. This may be understanding how
one protein interacts with another protein, whether
a drug treats or causes a particular symptom and
many other uses. Most methods assume that en-
tities (e.g. gene and drug names) in the sen-
tence have already been identified, either through
a named entity recognition tools (e.g. BANNER
(Leaman et al., 2008)) or basic dictionary match-
ing against a word list. The method must then
use linguistic cues within the sentence to predict
whether or not a relation exists between each pair
or group of entities and exactly which type of re-
lation it is.

The BioNLP Shared Task has catalyzed re-
search in relation extraction tools by providing an
environment for friendly competition between dif-
ferent relation extraction approaches. The orga-
nizers of the relation extraction subtasks provide
text from published literature with entities and re-
lations annotated. The participating researchers
build relation extraction models and predicted re-
lations on a test set. The participants’ predictions
are then analyzed by the organizers and the re-
sults presented to all. The BioNLP Shared Task
has been held in 2009, 2011, 2013 and recently
in 2016. The recent 2016 relation extraction prob-
lems focused on two areas: bacteria biotopes (BB3
subtask) and seed development (SeeDev subtask).
The BB3 subtask required participants to predict
relations between bacteria and their habitats. The
SeeDev subtask involved prediction of over twenty
different relation types related to seed develop-
ment.

Two main approaches to relation extraction
have been taken, a rule-based method and a vector-
based method. A rule-based approach identifies
common patterns that capture a relation. For in-
stance, two gene names with the word “regulates”
between them generally implies a regulation rela-
tion between the two entities. The BioSem method
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(Bui et al., 2013) identifies common patterns of
words and parts-of-speech between biomedical
terms and performed well in the BioNLP Shared
Task in 2013.

The vector-based approach transforms a span of
text and candidate relation into a numerical vector
that can be used in a traditional machine learning
classification approach. Support vector machines
(SVM) have commonly been used. The TEES
(Bjorne and Salakoski, 2013) and VERSE (Lever
and Jones, 2016) methods, which were success-
ful in many of the shared tasks, use this approach
with different approaches for creating the vectors
and selecting the parameters for classification.

Deep learning, already very popular in natural
language processing (LeCun et al., 2015), has be-
gun to be used in the biomedical text mining field
with one entry in the BioNLP Shared Task using
a recurrent neural network approach (Mehryary
et al., 2016). The paper examined the use of long
short-term memory (LSTM) networks for rela-
tion extraction, especially in situations with small
training dataset sizes. Given such a complicated
model, the problem of overfitting becomes very
large. They proposed approaches to reduce over-
fitting and the entry performed very well, coming
second in the competition.

The VERSE method came first in the BB3 event
subtask and third in the SeeDev binary subtask
in the BioNLP Shared Task 2016. An analysis
of the two systems that outperformed VERSE in
the SeeDev subtask points to interesting direc-
tions for further development. The SeeDev sub-
task differs greatly from the BB3 subtask as there
are 24 relation types compared to only 1 in BB3
and the training set size for each relation is drasti-
cally smaller. The LitWay approach, which came
first, uses a hybrid approach of rule-based and
vector-based (Li et al., 2016). For ”simpler” rela-
tions, defined using a custom list, a rule-based ap-
proach is used using a predefined set of patterns.
The UniMelb approach created individual classi-
fiers for each relation type and was able to predict
multiple relations for a candidate relation (Panyam
et al., 2016). This approach of treating relation
types differently suggests that there may be large
differences in how a relation should be treated in
terms of the linguistic cues used to identify it and
the best algorithm approach to identify it.

There are several shortcomings in the ap-
proaches to the BioNLP Shared Tasks, the great-
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est of all is the poor number of participants that
provide code. It is also clear that the advantages
of some of the most successful tools are tailored
specifically to these datasets and may not be able
to generalize easily to other relation extraction
tasks. Some tools that do share code such as TEES
and VERSE have a large number of dependen-
cies, though TEES ameliorates this problem with
an excellent installing tool that manages depen-
dencies. These tools can also be computationally
costly, with both TEES and VERSE taking a pa-
rameter optimization strategy that requires a clus-
ter for reasonable performance.

The biomedical text mining community is en-
deavoring to improve consistency and ease-of-use
for text mining tools. In 2012, the Biocreative
BioC Interoperability Initiative (Comeau et al.,
2014) encouraged researchers to develop biomed-
ical text mining tools around the BioC file for-
mat (Comeau et al., 2013). More recently, one
of the Biocreative BeCalm tasks focuses on “’tech-
nical interoperability and performance of annota-
tion servers” for a named entity recognition sys-
tems. This initiative encourages an ecosystem of
tools and datasets that will make text mining a
more common tool in biology research. PubAn-
notation (Kim and Wang, 2012), which is part
of this approach, is a public resource for shar-
ing annotated biomedical texts. The hope of this
resource is to provide data to improve biomed-
ical text mining tools and as a launching point
for future shared tasks. The PubTator tool (Wei
et al., 2013b) provides PubMed abstracts with var-
ious biomedical entities annotated using several
named entity recognition tools including tmVar
(Wei et al., 2013a) and DNorm (Leaman et al.,
2013).

In order to overcome some of the challenges
in the relation extraction community in terms
of ease-of-use and integration, we present Kin-
dred. Kindred is an easy-to-install Python pack-
age for relation extraction using a vector-based ap-
proach. It abstracts away much of the underly-
ing algorithms in order to allow a user to easily
start extracting biomedical knowledge from sen-
tences. However, the user can easily use individual
components of Kindred in conjunction with other
parsers or machine learning algorithms. It inte-
grates seamlessly with PubAnnotation and PubTa-
tor to allow easy access to training data and text to
be applied to. Furthermore, we show that it per-



Example Relation:

discase «—— causes

gene

The colorectal cancer was caused by mutations in APC

Standoff Format:

example.txt:

The colorectal cancer was caused by
mutations in APC

example.al:

Tl disease 4 21 colorectal cancer
T2 gene 49 52 APC

example.a2:

E1l causes subj:T2 obj:T1

JSON Format:

"text": "The colorectal cancer was
caused by mutations in ApC",
"denotations™:
[{"id":"T1", "obj":"disease",
"span":{"begin":4,"end":21}},
{"id":"T2", "obj":"gene",
"span":{"begin":49,"end":52}}],

"relations":
[{"id":"R1", "pred":"causes",
"subj":"T2", "obj":"T1"}]

Simple Tag Format:

BioC Format:

<?xml version='1.0" encoding="UTF-8"'?><!DOCTYPE
collection SYSTEM 'BioC.dtd'>
<collection>

<document>
<offset>o</offset>
<text>The colorectal cancer was caused by

mutations in APC</text>

<annotation id="T1">
<infon key="type">disease</infon>
<location offset="4" length="17"/>
<text>colorectal cancer</text>

</annotation>

<annotation id="T2">
<infon key="type">gene</infon>
<location offset="49" length="3"/>
<text>APC</text>

</annotation>

<relation id="R1">
<infon key="type">causes</infon>
<node refid="T2" role="subj"/>
<node refid="T1" role="obj"/>

</relation>

</passage>
</document>

</collection>

The <disease id="T1">colorectal cancer</disease> was caused by mutations in <gene
id="T2">APC</gene><relation type="causes" subj="T2" obj="T1" />

Figure 1:

An example of a relation between two entities in the same sentence and the representations of

the relation in four input/output formats that Kindred supports.

forms very well on the BioNLP Shared Task 2016
relation subtasks.

2 Methods

Kindred is a Python package that builds upon the
Stanford CoreNLP framework (Manning et al.,
2014) and the scikit-learn machine learning library
(Pedregosa et al., 2011). The decision to build a
package was based on the understanding that each
text mining problem is different. It seemed more
valuable to make the individual features of the re-
lation extraction system available to the commu-
nity than a bespoke tool that was designed to solve
a fixed type of biomedical text mining problem.
Python was selected due to the excellent support
for machine learning and the easy distribution of
Python packages.

The ethos of the design is based on the scikit-
learn API that allows complex operations to oc-
cur in very few lines of code, but also gives de-
tailed control of the individual components. In-
dividual computational units are encapsulated in
separate classes to improve modularity and allow
easier testing. Nevertheless, the main goal was

178

to allow the user to download annotated data and
build a relation extraction classifier in as few lines
of code as possible.

2.1 Package development

The package has been developed for ease-of-use
and reliability. The code for the package is hosted
on Github. It was also developed using the contin-
uous integration system Travis CI in order to im-
prove the robustness of the tool. This allows reg-
ular tests to be run whenever code is committed
to the repository. This will enable further devel-
opment of Kindred and ensure that it continues to
work with both Python 2 and Python 3. Coveralls
and the Python coverage tool are used to evaluate
code coverage and assist in test evaluation.

These approaches were in line with the recent
recommendations on improving research software
(Taschuk and Wilson, 2017). We hope these tech-
niques will allow for and encourage others to make
use of and contribute to the Kindred package.



2.2 Data Formats

As illustrated in Figure 1, Kindred accepts data in
four different formats: the standoff format used by
BioNLP Shared Tasks, the JSON format used by
PubAnnotation, the BioC format (Comeau et al.,
2013) and a simple tag format. The standoff for-
mat uses three files, a TXT file that contains the
raw text, an Al file that contains information on
the tagged entities and an A2 file that contains
information on the relations between the entities.
The JSON, BioC and simple tag formats integrate
this information into single files. The input text
in each of these formats must have already been
annotated for entities.

The simple tag format was implemented primar-
ily for simple illustrations of Kindred and for eas-
ier testing purposes. It is parsed using an XML
parser to identify all tags. A relation tag should
contain a ’type” attribute that denotes the relation
type (e.g. causes). All other attributes are assumed
to be arguments for the relation and their values
should be IDs for entities in the same text. A non-
relation tag is assumed to be describing an entity
and should have an ID attribute that is used for as-
sociating relations.

2.3 Parsing and Candidate Building

The text data is loaded, and where possible, the
annotations are checked for validity. In order to
prepare the data for classification, the first step is
sentence splitting and tokenization. We use the
Stanford CoreNLP toolkit for this which is also
used for dependency parsing for each sentence.

Once parsing has completed, the associated en-
tity information must then be matched with the
corresponding sentences. An entity can contain
non-contiguous tokens as was the case for the BB3
event dataset in the BioNLP 2016 Shared Task.
Therefore each token that overlaps with an anno-
tation for an entity is linked to that entity.

Any relations that occur entirely within a sen-
tence are associated with that sentence. The de-
cision to focus on relations contained within sen-
tence boundaries is based on the poor perfor-
mance of relation extraction systems in the past.
The VERSE tool explored predicting relations
that spanned sentence boundaries in the BioNLP
Shared Task and found that the false positive rate
was too high. The sentence is also parsed to
generate a dependency graph which is stored as
a set of triples (token;,token;,dependency;;)
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where dependency;; is the type of edge in the
dependency graph between tokens ¢ and j. The
edge types use the Universal Dependencies format
(Nivre et al., 2016).

Relation candidates are then created by find-
ing every possible pair of entities within each sen-
tence. The candidates that are annotated relations
are stored with a class number for use in the mul-
ticlass classifier. The class zero denotes no rela-
tion. All other classes denote relations of specific
types. The types of relations and therefore how
many classes are required for the multiclass clas-
sifier are based on the training data provided to
Kindred.

2.4 Vectorization

Each candidate is then vectorized in order to trans-
form the tokenized sentence and set of entity in-
formation into a numerical vector that can be pro-
cessed using the scikit-learn classifiers. In order to
keep Kindred simple and improve performance, it
only generates a small set of features as outlined
below.

o Entity types in the candidate relation

Unigrams between entities

Bigrams for the full sentence

Edges in dependency path

Edges in dependency path that are next to
each entity.

For the entity type and edge relations, they are
stored in a one-hot format. For the entity specific
relations, features are created for each entity. For
instance, if there are three relation types for rela-
tions between two arguments, then six binary fea-
tures would be required to capture the entity types.

The unigrams and bigrams use a bag-of-words
approach. Term-frequency inverse-document fre-
quency (TF-IDF) is used for all bag-of-words
based features. The dependency path, using the
same method as VERSE, is calculated as the min-
imum spanning tree between the nodes in the de-
pendency graph that are associated with the enti-
ties in the candidate relation.

2.5 Classification

Kindred has in-built support for the support vec-
tor machine (SVM) and logistic regression classi-
fiers implemented in scikit-learn. By default, the



SVM classifier is used with the vectorized can-
didate relations. The linear kernel has shown to
give good performance and is substantially faster
to train than alternative SVM kernels such as ra-
dial basis function or exponential.

The success of the LitWay and UniMelb entries
to the SeeDev shared task suggested that individ-
ual classifiers for unique relation types may give
improved performance. This may be due to the
significant differences in complexity between dif-
ferent relation types. For instance, one relation
type may require information from across the sen-
tence for good classification, whereas another rela-
tion type may require only the neighboring word.

Using one classifier per relation type, instead
of a single multiclass classifier, means that a re-
lation candidate may be predicted to be multiple
relation types. Depending on the dataset, this may
be the appropriate decision as relations may over-
lap. Kindred offers this functionality of one clas-
sifier per relation type. However, for the SeeDev
dataset, we found that the best performance was
actually through a single multiclass classifier.

2.6 Filtering

The predicted set of relations is then filtered us-
ing the associated relation type and types of the
entities in the relation. Kindred uses the set of
relations in the training data to infer the possible
argument types for each relation.

2.7 Precision-recall tradeoff

The importance of precision and recall depends on
the specific text mining problem. The BioNLP
Shared Task has favored the Fl-score, giving an
equal weighting to precision and recall. Other text
mining projects may prefer higher precision in or-
der to avoid biocurators having to manually filter
out spurious results. Alternatively, projects may
require higher recall in order to not miss any pos-
sibly important results. Kindred gives the user the
control of a threshold for making predictions. In
this case, the logistic regression classifier is used
as it allows for easier thresholding. This is be-
cause the underlying predicted values can be in-
terpreted as probabilities. We found that logistic
regression achieved performance very close to the
SVM classifier. By selecting a higher threshold,
the classifier will become more conservative, de-
crease the number of false positives and therefore
improve precision at the cost of recall. By us-
ing cross-validation, the user can get an idea of
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Figure 2: The precision-recall tradeoff when
trained on the training set for the BB3 and SeeDev
results and evaluating on the development set us-
ing different thresholds. The numbers shown on
the plot are the thresholds.

the precision-recall tradeoff. The tradeoffs for the
BB3 and SeeDev tasks are shown in 2. This allows
the user to select the appropriate threshold for their
task.

2.8 Parameter optimization

TEES took a grid-search approach to parameter
optimization and focused on the parameters of the
SVM classifier. VERSE had a significantly larger
selection of parameters and grid search was not
computationally feasible so a stochastic approach
was used. Both approaches are computationally
expensive and generally need a computer cluster.

Kindred takes a much simpler approach to pa-
rameter optimization and can work out of the box
with default values. To improve performance, the
user can choose to do minor parameter optimiza-
tion. The only parameter optimized by Kindred
is the exact set of features used for classifica-
tion. This decision was made with the hypothesis
that some relations potentially require words from
across the sentence and other need only the infor-
mation from the dependency parse.

The feature choice optimization uses a greedy
algorithm. It calculates the F1-score using cross
validation for each feature type. It then selects
the best one and tries adding the remaining fea-
ture types to it. It continues growing the feature
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Figure 3: An illustration of the greedy approach to
selecting feature types for the BB3 dataset.

set until the cross-validated F1 score does not im-
prove.

Figure 3 illustrates the process for the BB3 sub-
task using the training set and evaluating on the de-
velopment set. At the first stage, the entity types
feature is selected. This is understandable as the
types of entity are highly predictive of whether
a candidate relation is reasonable for a particular
candidate type, e.g. two gene entities are unlikely
to be associated in a 'IS_TREATMENT_FOR’ re-
lation. At the next stage, the unigrams between
entities feature is selected. And on the third stage,
no improvement is made. Hence for this dataset,
two features are selected. We use this approach for
the BB3 dataset but found that the default feature
set performed best for the SeeDev dataset.

2.9 Dependencies

The main dependencies of Kindred are the scikit-
learn machine learning library and the Stanford
CoreNLP toolkit. Kindred will check for a locally
running CoreNLP server and connect if possible.
If none is found, then the CoreNLP archive file
will be downloaded. After checking the SHA256
checksum to confirm the file integrity, it is ex-
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tracted. It will then launch CoreNLP as a back-
ground process and wait until the toolkit is ready
before proceeding to send parse requests to it. It
also makes sure to kill the CoreNLP process when
the Kindred package exits. Kindred also depends
on the wget package for easy downloading of files,
the IntervalTree python package for identifying
entity spans in text and NetworkX for generating
the dependency path (Schult and Swart, 2008).

2.10 PubAnnotation integration

In order to make use of existing resources in the
biomedical text mining community, Kindred in-
tegrates with PubAnnotation. This allows anno-
tated text to be downloaded from PubAnnotation
and used to train classifiers.

The PubAnnotation platform provides a REST-
ful API that allows easy download of annotations
from a given project. Kindred will initially down-
load the listing of all available text sources with
annotation for a given project. The listing is pro-
vided as a JSON data file. It will then download
the complete set of texts with annotations.

2.11 PubTator integration

Kindred can also download a set of annotated
PubMed abstracts that have already been anno-
tated with named entities through the PubTator
framework using the RESTful API. This requires
the user to provide a set of PubMed IDs which are
then requested from the PubTator server using the
JSON data format. The same loader used for Pub-
Annotation data is then used for the PubTator data.

2.12 BioNLP Shared Task integration

Kindred gives easy access to the data from the
most recent BioNLP Shared Task. By providing
the name of the test and specific data set (e.g.
training, development or testing), Kindred man-
ages the download of the appropriate archive, un-
zipping and loading of the data. As with the
CoreNLP dependency, the SHA256 checksum of
the downloaded archive is checked before unzip-
ping occurs.

2.13 API

One of the main goals of Kindred is to open up the
internal functionality of a relation extraction sys-
tem to other developers. The authors are keenly
aware that their specific interest in relation extrac-
tion, in order to build knowledge bases related to
cancer, differs from other researchers. With this



Precision | Recall | F1 Score
Fold 1 0.319 0.715 0.441
Fold 2 0.460 0.684 0.550
Test Set 0.579 0.443 0.502
VERSE | 0510 [ 0615 | 0.558 |

Table 1: Cross-validated results (Fold1/Fold2) and
final test set results for Kindred predictions in Bac-
teria Biotope (BB3) event subtask with test set re-
sults for the top performing tool VERSE.

in mind, the API is designed to give easy access
to the different modules of Kindred that may be
used independently. For instance, the candidate
builder or vectorizer could easily be integrated
with functionality from other Python packages,
which would allow for other machine learning al-
gorithms or deep learning techniques to be tested.
Other parsers could easily be integrated and tested
with the other parts of the Kindred in order to un-
derstand how the parser performance affects the
overall performance of the system. We hope that
this ease-of-use will encourage others to use Kin-
dred as a baseline method for comparison in future
research.

3 Results and Discussion

In order to show the efficacy of Kindred, we eval-
uate the performance on the BioNLP 2016 Shared
Task data for the BB3 event extraction subtask and
the SeeDev binary relation subtask. Parameter op-
timization was used for BB3 subtask but not for
the SeeDev subtask which used the default set of
feature types. Both tasks used a single multiclass
classifier. Tables 1 and 2 shows both the cross-
validated results using the provided training/devel-
opment split as well as the final results for the test
set.

The results are in line with the best perform-
ing tools in the shared task. It is to be expected
that it does not achieve the best score in either
task. VERSE, which achieved the best score in the
BB3 subtask, utilized a computational cluster to
test out different parameter settings for vectoriza-
tion as well as classification. LitWay, the winner
of the SeeDev subtask, used hand-crafted rules for
anumber of the relation types. Given the computa-
tional speed and simplicity of the system, Kindred
is a valuable contribution to the community.

These results suggest several possible exten-
sions of Kindred. Firstly, a hybrid system that
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Precision | Recall | F1 Score
Fold 1 0.333 0.411 0.368
Fold 2 0.255 0.393 | 0.309
Test Set | 0.344 0.479 | 0.400
| LitWay | 0417 [ 0448 | 0432 |

Table 2: Cross-validated results (Fold1/Fold2) and
final test set results for Kindred predictions in
Seed Development (SeeDev) binary subtask with
test set results for the top performing tool LitWay.

mixes a vector-based classifier with some hand-
crafted rules may improve system performance.
This would need to be implemented to allow cus-
tomization in order to support different biomedi-
cal tasks. Kindred is also geared towards PubMed
abstract text, especially given the integration with
PubTator. Using PubTator’s API to annotate other
text would allow Kindred to easily integrate other
text sources, including full-text articles where pos-
sible. Given the open nature of the API, we hope
that these improvements, if desired by the commu-
nity, could be easily developed and tested.

Kindred has several weaknesses that we hope to
improve. It does not properly handle entities that
lie within tokens. For example, a token "HER2+",
with "HER” annotated as a gene name, denotes a
breast cancer subtype that is positive for the HER2
receptor. Kindred will currently associate the full
token as a gene entity and will not properly deal
the ”+”. This is not a concern for the BioNLP
Shared Task problem but may become important
in other text mining tasks.

4 Conclusion

We have presented the Kindred relation extraction
package. It is designed for ease-of-use to encour-
age more researchers to test out relation extrac-
tion in their research. By integrating a selection
of file formats and connecting to a set of exist-
ing resources including PubAnnotation and Pub-
Tator, Kindred will make the first steps for a re-
searcher must less cumbersome. We also hope that
the codebase will allow researchers to build upon
the methods to make further improvements in re-
lation extraction research.
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Abstract

Distant supervision has been applied to
automatically generate labeled data for
biomedical relation extraction. Noise ex-
ists in both positively and negatively-
labeled data and affects the performance of
supervised machine learning methods. In
this paper, we propose three novel heuris-
tics based on the notion of proximity, trig-
ger word and confidence of patterns to
leverage lexical and syntactic information
to reduce the level of noise in the distantly
labeled data. Experiments on three dif-
ferent tasks, extraction of protein-protein-
interaction, miRNA-gene regulation rela-
tion and protein-localization event, show
that the proposed methods can improve
the F-score over the baseline by 6, 10 and
14 points for the three tasks, respectively.
We also show that when the models are
configured to output high-confidence re-
sults, high precisions can be obtained us-
ing the proposed methods, making them
promising for facilitating manual curation
for databases.

1 Introduction

Biomedical relation extraction is a widely studied
field that is concerned with the detection of dif-
ferent kinds of relations between bio-entities men-
tioned in text. With the rapid growth of biomed-
ical literature, it has attracted much research in-
terest as it makes possible to automatically ex-
tract structured information from large amounts of
text. Biomedical relation extraction has helped
facilitate manual curation of many biomedical
databases as well as biological hypothesis gener-
ation.

Various tasks have been studied for biomedi-
cal relation extraction, e.g., extraction of protein-
protein interaction (Airola et al., 2008), drug-
drug interaction (Segura-Bedmar et al., 2013)
and mutation-disease association (Singhal et al.,
2016). In recent years, community-organized
events, such as BioNLP (Kim et al., 2012, 2013)
and BioCreative (Arighi et al., 2014; Wei et al.,
2015b), provide comprehensive evaluation for ex-
traction systems of a wide range of biomedical
relations and events. In these tasks, supervised
learning methods are commonly used and achieve
state-of-the-art results.

When applying supervised learning methods, a
training corpus is required to train the extraction
model. The creation of a training corpus usu-
ally requires curators with domain knowledge, and
is a time-consuming and labor-intensive process.
Thus, it is one of the main obstacles in the use of
supervised learning methods for relation extrac-
tion. To address this issue, recently researchers
have been using distant supervision to construct
training data automatically.

In distant supervision, a heuristic labeling pro-
cess is used to label a text corpus using known re-
lated entity pairs from a database. Text containing
these entity mentions or their different name varia-
tions are labeled as positive instances. To illustrate
the labeling process, we show two example sen-
tences labeled using interacting protein pairs from
the database IntAct (Orchard et al., 2014).

e (NgR, p75): NgR interacted with p75 in lipid
rafts

e (Mdm2, p53): As a consequence, N-
terminally truncated Mdm2 binds p53 and
promotes its stability.

The above sentences are labeled as positive in-
stances and express protein-protein interaction re-
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lation between the protein mention pair. When
a protein pair mentioned in a sentence is not
recorded by IntAct, the sentence is then labeled as
a negative instance. The positively and negatively-
labeled data generated by this process can poten-
tially be used by supervised learning algorithms
to train a model. Various existing biological
databases and the large amount of Medline ab-
stracts and PMC full-length articles can support
applying distant supervision for many biomedical
relation extraction tasks. However, the main draw-
back of distant supervision is that the created data
can be very noisy, due to the guideless heuristic
labeling process. Wrongly labeled instances ex-
ist in both positively and negatively-labeled data.
For example, consider the two labeled sentences
below for protein-protein interaction.

e (Mdm2, p53): Ribosomal protein S3: A
multi-functional protein that interacts with
both pS3 and MDM2 through its KH domain.

e (LRAP35a, MYO18A): LRAP35a binds in-
dependently to MYO18A and MRCK.

In the first sentence, although the protein pair
(Mdm2, p53) are interacting with each other ac-
cording to IntAct, no explicit description in the
sentence expresses such an interaction relation. It
is labeled as a positive instance by the heuristic la-
beling process, which is a wrong annotation. On
the other hand, if a related entity pair has not been
recorded in the database, all the sentences con-
taining their mentions will be labeled as negative
instances, which may also contain wrong annota-
tions. As an example, the protein pair (LRAP35a,
MYO18A) in the second sentence is not recorded
by IntAct. The sentence is labeled as negative,
while it expresses an interaction relation between
the two proteins. Thus, it is a wrong annotation in
the negatively-labeled data.

In this paper, we propose three novel heuristics
that attempt to reduce the noise in the positively-
labeled data set P as well as the negatively-labeled
data set IV. First, noise can be removed from P us-
ing lexical and syntactic information of the entity
mention pairs. Next, high-confidence patterns can
be discovered using the purified P, which can then
be used to remove noise from /N. Experiments on
three tasks, extraction of protein-protein interac-
tion, miRNA-gene regulation relation and protein-
localization event, show that our methods can im-
prove the F-score by 6, 10 and 14 points over the
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baseline for the three tasks, respectively. Further-
more, we show that our methods obtain 0.71, 0.95
and 0.77 precision at recall level 0.30 for the three
tasks, respectively, making them promising for fa-
cilitating database curation.

In the rest of the paper, we first discuss the
related work in Section 2. Section 3 describes
the three tasks for experiments, as well as the
databases and text corpora used in our experiments
for applying distant supervision. In Section 4, we
describe the details of the proposed methods. Ex-
periments results will be reported in Section 5. We
conclude with future work in Section 6.

2 Related Work

Distant supervision for relation extraction was first
proposed by Craven and Kumlien (1999) to ex-
tract protein-localization relation. Mintz et al.
(2009) used Freebase relations to annotate arti-
cles in Wikipedia and trained a logistic regression
model to extract 102 different types of relations.
Riedel et al. (2010) proposed to use multi-instance
learning to tolerate noise in the positively-labeled
data. They relaxed the original assumption in dis-
tant supervision that all the positively-labeled sen-
tences of an entity pair express the relation of in-
terest and instead, they assume that at least one
of the sentences does. Hoffmann et al. (2011)
and Surdeanu et al. (2012) continued to augment
the multi-instance model with a multi-label clas-
sifier for each entity pair, to exploit correlations
and conflicts among different relations to improve
performance. In these approaches, researchers fo-
cus on developing models that can tolerate noise
and improve extraction performance on entity pair
level. However, it is important to note that the
noise is not explicitly removed from the labeled
data, and extraction on sentence level is not opti-
mized directly.

Focusing on explicitly reducing noise from
the distantly-labeled training data, Intxaurrondo
et al. (2013) proposed three simple heuristics to
remove noise from the positively-labeled data.
They tried to filter out positively-labeled instances
that appear too frequently or have a large dis-
tance from their cluster centroid, or positive en-
tity pairs that have a low partial mutual informa-
tion. Takamatsu et al. (2012) proposed a statisti-
cal model to estimate P(relation|pattern), and
removed positively-labeled instances that match
a low-probability pattern. Xu et al. (2013)



used pseudo-relevance feedback to discover high-
confidence related entity pairs which do not exist
in the database, and removed negatively-labeled
instances of these entity pairs. Roller et al. (2015)
tried to reduce noise in the negatively-labeled data
by inferring new relations of a knowledge graph
using a random-walk algorithm. Roth et al. (2013)
gave a nice review of some of the above methods.

Distant supervision has also been applied to ex-
tract biomedical relation. Zheng and Blake (2015)
used a heuristic based on dependency path fre-
quency to reduce noise in the positively-labeled
data for extraction of protein-localization rela-
tions. Thomas et al. (2011) used a list of words
which are frequently employed to indicate protein
interaction to filter out noise for protein-protein in-
teraction extraction. Roller and Stevenson (2015)
tried to combine existing hand-labeled data with
distantly labeled data to improve the performance
for drug-condition relations. Multi-instance learn-
ing was used by Roller et al. (2015) to extract two
subsets of relations in UMLS database with re-
duced noise by a path ranking algorithm, and by
Lamurias et al. (2017) to extract miRNA-gene re-
lations.

3 Resources

3.1 Task Definition

In this paper, we use three tasks, extraction
of protein-protein interaction (PPI), miRNA-
gene regulation relation (MIRGENE) and protein-
localization event (PLOC), to evaluate our meth-
ods. Extraction of PPIs is a well-studied task
(Miwa et al., 2009; Peng et al., 2016). We aim
to extract interacting protein pairs from text us-
ing distant supervision, and evaluate it on one of
the public corpora used by previous work. Ex-
traction of miRNA-gene regulation relations have
attracted much interest recently because of the
rapid growth of miRNA-related literature (Bage-
wadi et al., 2014; Li et al., 2015). In a MIRGENE
relation, a miRNA regulates gene expression via
direct binding to the gene’s 3> UTR or indirect
pathway effect. Extraction of protein-localization
event has been a subtask in BioNLP shared task
from 2009 to 2013 in the Genia track (Kim et al.,
2013). It describes the event that a protein is lo-
calized to a subcellular location. We only con-
sider extraction of such events when the sentence
mentions the protein and the location, same with
Zheng and Blake (2015). We list an example sen-
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tence for each task below.

e PPI: Interaction of She with Grb2 regulates
association of Grb2 with mSOS.

e MIRGENE: MicroRNA-223 regulates
FOXO1 expression and cell proliferation.

o PLOC: The cyclin G1 protein was localized
in nucleus.

3.2 Training Data Construction

To construct the training set, we need a database
containing related entity pairs and a large amount
of text for the heuristic labeling.  Table 1
lists the databases, text corpora and numbers of
positively/negatively-labeled instances produced
by the heuristic labeling process for the three
tasks.

Task Database Abstracts | Positive / Negative
PPI IntAct 14,769 67,099 /108,016
MIRGENE | Tarbase, miRTarBase | 30,000 75,632/97,118
PLOC UniProt 30,000 28,985/ 82,132

Table 1: Databases, text corpora and distantly la-
beled data for the three tasks.

From all the Medline abstracts, we randomly
sampled 30,000 abstracts with sentences men-
tioning a pair of miRNA and gene for miRNA-
gene regulation relation, and 30,000 abstracts
with sentences mentioning a pair of protein and
subcellular location for protein-localization event.
We tried sampling more abstracts but the ex-
periment results were not significantly different.
For protein-protein interaction, using Medline ab-
stracts leads to a skewed labeled data set (1:7.4
positive/negative ratio), we turned to use all the
abstracts that are curated by IntAct database as the
text corpus. Although this may result in less noise,
we will show that our proposed methods are still
able to improve performance over the baseline in
the experiments.

In the heuristic labeling process, we need to
recognize entity mentions in text and map them
to their database entry. For gene/protein, we use
the output from GenNorm++ (Wei et al., 2015a).
We use simple regular expressions to recognize
miRNA mentions, and map them to a miRNA en-
try in TarBase (Vlachos et al., 2014) or miRTar-
Base (Hsu et al., 2014) using the number in the
miRNA name. For subcellular location, similar to
Zheng and Blake (2015), we use a dictionary from



UniProt (UniProt Consortium, 2014) and perform
string matching to find subcellular location men-
tions. The entry "secreted” is removed as it is
not a specific subcellular location. The dictionary
contains name variants for each location, and we
normalize a matched variant in text to its standard
name.

3.3 Test Data

We evaluate the baselines and proposed methods
on a test set directly for the three tasks. Note that
in the context of distant supervision, we should ex-
pect little or no hand-labeled data. Hence, we can
not assume the availability of a development set
for the purpose of parameter tuning. Thus, when
a method has multiple possible choices for a pa-
rameter, we will report the results using different
parameter values.

For the test set, we use the AIMed corpus
(Bunescu et al., 2005) for PPI extraction, same
with Bobic et al. (2012). We extend the corpus in
our work (Li et al., 2015) to include relation men-
tion annotations, and use the development set to
evaluate MIRGENE extraction. For PLOC extrac-
tion we use BioNLP 2011 Genia training and de-
velopment set, same with Zheng and Blake (2015).
Gold entity annotations in these corpora are used
except for subcellular location, we use the dictio-
nary from UniProt to recognize them, as BioNLP
Genia corpus only annotates subcellular locations
that participate in an event. The characteristics of
the three test corpora are listed in Table 2. We
ensure that the test sets do not overlap with the
training sets. Specifically, all the abstracts used by
the test sets are removed from the document pools
from where the training sets are sampled.

Task Documents | Annotations (P/N)
PPI 225 1,000/ 4,611
MIRGENE | 200 464 /775
PLOC 1,167 125/71,783
Table 2: Test sets for the three tasks.
4 Methods

4.1 Model and Feature Set

Logistic regression (LR) model is used for all our
proposed methods in the experiments. An exam-
ple sentence with relevant dependency relations
and its extracted features are shown in Fig. 1 and
Table 3. E-walk and v-walk features are (edge,
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stem, edge) and (stem, edge, stem) triples includ-
ing the direction extracted from the shortest de-
pendency path. They preserve partial structure in-
formation and are more generalizable than the full
dependency path.

nmod:with

nmod:of

The interaction of [dPTPGlF] with [ITSNI] was confirmed in vivo.

Figure 1: Example sentence for feature extraction.

No. | Feature
1 P1+—nmod:of«<—nmod:with—P2
2 nmod:of«—interact—nmod:with
3 P1«<—nmod:of—interact
interact—nmod:with—P2
4 P1_with_P2
of_P2_with_P2_be
interact_of P1_with_P2_be_confirm
5 2
6 1

Table 3: Features extracted from the example sen-
tence. P1 and P2 represent the two protein men-
tions. 1: unlexicalized shortest dependency path;
2: e-walk features; 3: v-walks features; 4: three
stem sequences, 5: number of edges on the short-
est dependency path; 6: number of stems on the
first stem sequence.

For all the lexical terms, we use their stems pro-
duced by Porter’s stemmer (Porter, 1980). Char-
niak parser (Charniak, 2000; Charniak and John-
son, 2005) with the biomedical model (Mcclosky,
2010) is used to produce constituency parse for
each sentence, which is converted to collapsed
dependency parse using Stanford CoreNLP con-
verter (Manning et al., 2014) with CCprocessed
setting. We remove features that only appear once
in the whole training set.

4.2 Baselines

The baseline is a LR model trained on the distantly
labeled set without any filtering of noise. We
also implement two previous methods for compar-
ison. First, we train a LR model on the distantly
labeled set filtered by a heuristic (DPFreq) pro-
posed by Zheng and Blake (2015), which removes
positively-labeled instances with a shortest depen-
dency path that appear less than & times in the pos-
itive set. They hypothesize that rare dependency
path is unlikely to express a relation. As we tried
different values of k and obtained similar F-scores



for the three tasks, we only report the results for
k = 5 to save space. Note that since different
features, text corpus and named entity recognition
tool are used, we are not trying to reproduce the
exact results reported in Zheng and Blake (2015).
In addition, we implement a widely-used multi-
instance model described in Surdeanu et al. (2012)
and train it on unfiltered distantly labeled data.

4.3 Proposed Heuristics

We propose three novel filtering methods to re-
move noise from both positively and negatively-
labeled data. These methods are applied in a se-
quential manner so that each step removes more
noise based on the filtered data from the previous
step.

The first heuristic is concerned with multiple
mentions of an entity in a sentence. If the entity
is related to another entity mentioned in the sen-
tence, all the binary combinations of their men-
tions will be labeled as positive by the default
labeling process. This usually introduces noise,
since not all combinations are likely to be in the
relation. For example, consider the sentence be-
low.

Overexpression of miR-193b inhibited the ex-
pression of CCND1, and knock-down of CCND1
inhibited the proliferation of GC cells, suggesting
that miR-193b exerted its anti-tumorigenic role in
GC cells through targeting CCND1 gene.

miR-193b regulates CCND1 according to the
database TarBase. The six binary combinations
between miR-193b and CCNDI in the sentence
will be labeled as positive instances. However, the
sentence only expresses miRNA-gene regulation
relation for the first and the last combination. The
other four are wrongly labeled and hence consti-
tute noise in the positively-labeled data.

To remove such noise, we hypothesize that only
the closest pair of the entity mentions express the
relation. The closest pair is defined as follow-
ing: for a positively-labeled entity mention pair
(e1, ea), if their shortest dependency path has the
smallest length among all the positively-labeled
instances that involve either e; or eg, the pair
(e1, e2) is considered as a closest pair. When com-
puting the dependency path length, we skip the ap-
pos relation. The heuristic is described as below.

Heuristic of closest pairs (CP): remove
positively-labeled instances that are not closest
pair, when multiple mentions of one or both en-
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tities are present in the sentence.

For the three tasks and many other biomedical
text-mining tasks, the relation or event is often in-
dicated by a small set of trigger words (e.g., inter-
act/bind for PP, regulate/target for MIRGENE,
and localize/translocate for PLOC). Following the
usage in the BioNLP Genia corpus, we can term
these words as trigger words. With knowledge of
a comprehensive set of trigger words, we can hy-
pothesize that sentences without a trigger word are
less likely to express the target relation or event.
We propose to automatically mine such trigger
words from the large distantly-labeled corpus, and
use them to remove noise from the positively-
labeled data.

Trigger words are usually verbs, or in their nom-
inal or adjectival form. Our target is then to iden-
tify stems of verb triggers, which can also be used
to match nominal or adjectival form of the verb.
A simple procedure is used: first, count all the
verb stems on the shortest dependency paths of
the positively-labeled instances generated by the
heuristic labeling process. As we want to choose
triggers that are strongly associated with the re-
lation, we only use dependency paths that con-
tain one token, excluding the two entity mentions.
These verb stems are then sorted by frequency and
the high-frequency stems are chosen for the trig-
ger list. We list the top 10 verb stems for the three
tasks in Table 4.

For each positively-labeled instance, we search
for trigger stems in the tokens on its shortest
dependency path or in the maximum dominat-
ing noun phrase. A maximum dominating noun
phrase is defined as the maximally-spanning noun
phrase that encloses the two entity mentions, with
only noun or prepositional phrases as descendants.
For example, in the text fragment "interaction be-
tween FAK and PP1 regulates a process", the
maximum dominating noun phrase is "interaction
between FAK with PP1" for this protein mention
pair. As sentences without a trigger word are less
likely to express the target relation or event, we
use the heuristic described below to remove noise.

Heuristic of trigger word (TW): remove
positively-labeled instances if a trigger stem is not
found on the shortest dependency path or in the
maximum dominating noun phrase of the entity
mention pair.

By using heuristic CP and TW, we can already
filter out a substantial part of the positively-labeled



Task Verb stems Pattern and example sentence

PPI nteract, bind, assocl, PROSPROIYL I~ | pROTEIN1—nsubj—interact—nmod:with—PROTEIN2
orutt, activ, coloc, co UNOPTECIPIL €O~ 1 1 Grb10 interacts with Neddd.
immunoprecipit, regul

MIRGENE | teet regul, inhibit, downregul, suppress, | GENE<«—dobj«target«—advcl«—root—nsubj—MIRNA
repress, down-regul, correl, induc, promot MiR-429 play its role in PDAC by targeting TBK1.

PLOC local, transloc, express, associ, interact, de- | PROTEIN«—nmod:of+«transloc—amod—LOCATION
tect, coloc, find, co-loc, target Importin beta mediates nuclear translocation of Smad 3.

Table 4: The top 10 verb stems and top pattern and example sentence for the three tasks.
data. Using heuristic CP+TW with 50 trigger 5 Results and Discussions

stems, 65% of the positively-labeled data can be
removed for PPI. For MIRGENE and PLOC, the
removal ratio is 38% and 59%, respectively. We
hypothesize that the remaining set will still con-
tain a large amount of data for training and more
importantly, it will be of high quality, and thus it
would be possible to discover high-confidence pat-
terns from it using pattern occurrence frequency.

Finally, we turn to the last heuristic that we
introduce. Recall noisy instances in negatively-
labeled data should be labeled as positive but are
negatively labeled because of incompleteness of
the database used for distant supervision. We try
to mine some high-confidence patterns from the
purified positively-labeled set after the application
of heuristic CP and TW. We define a pattern as a
shortest dependency path lexicalized by a trigger
stem between the entity mention pair. The pattern
frequencies in the positively-labeled data filtered
by heuristic CP and TW are counted. The most
frequent pattern and an example sentence for each
task are shown in Table 4.

Our hypothesis is that any entity mention pair
connected by a high-confidence pattern is likely
to be related and hence probably constitute noise
in the negatively-labeled data. Therefore, we con-
sider the next heuristic described below.

Heuristic of high-confidence patterns (HP):
remove negatively-labeled instances which match
a high-confidence pattern mined from positively-
labeled data.

Note that heuristic DPFreq, CP and TW re-
move instances from the positively-labeled data,
whereas HP is the only heuristic that removes in-
stances from the negatively-labeled data. Heuris-
tic TW depends on the number of trigger stems,
while heuristic HP depends on both the number
of trigger stems and high-confidence patterns, as
it needs the trigger stems to lexicalize the shortest
dependency path to form a pattern.

We use precision, recall and F-score to evaluate
the baselines and proposed methods. The top 50
trigger stems were used in heuristic TW, while the
top 50 trigger stems and the top 100 patterns were
used in heuristic HP. The results are presented in
Table 5. Specificity is also presented. We will dis-
cuss how different numbers of trigger stems and
patterns may affect the results later.

Table 5 shows that the multi-instance model
and the use of heuristic DPFreq or CP increased
precision compared to the baseline for all the
three tasks, indicating that they can effectively re-
move noise from the positively-labeled data. Us-
ing heuristic CP+TW further improved precisions
over heuristic CP for the three tasks. However, us-
ing heuristic DPFreq, CP or CP+TW did not im-
prove the F-score over the baseline for PPI and
MIRGENE, due the decreased recall. By remov-
ing noise from the negatively-labeled data using
heuristic HP in addition to CP and TW, the re-
calls can be improved with minor or no decrease
in precision, resulting in higher F-scores than the
baseline, the MI model and other heuristics for
all the three tasks. This suggests that the pro-
posed heuristics can effectively remove noise from
both positively and negatively-labeled data, and
to obtain better F-scores, it is important to filter
both positive and negative set to improve preci-
sion and recall simultaneously. Although PLOC
extraction did not obtain a good precision in all the
experiments, we will show that high precision can
be achieved for high-confidence PLOC extraction
later in this section.

By applying heuristic CP+TW+HP, the F-score
can be improved by 10 points for PPI extraction
compared to Bobic et al. (2012), and 11 points for
PLOC extraction compared to Zheng and Blake
(2015).

Different numbers of trigger stems: as differ-
ent numbers of trigger stems can be used in heuris-
tic TW and HP, we investigated how they affect
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PPI MIRGENE PLOC
Method P R F S P R F S P R F S
Bobic et al. (2012) 0.26 | 0.78 | 0.39 - - - - - - - - -
Zheng and Blake (2015) - - - - - - - - 043 | 0.25 | 0.31 -
Baseline 0.37 | 0.52 | 043 | 0.86 | 0.56 | 0.58 | 0.57 | 0.74 | 0.18 | 0.57 | 0.28 | 0.94
Multi-instance (MI) 0.57 | 0.35| 043 | 091 | 0.64 | 0.56 | 0.59 | 0.78 | 0.22 | 0.38 | 0.29 | 0.94
DPFreq 042 | 041 | 041 | 0.87 | 0.63 | 0.50 | 0.56 | 0.78 | 0.21 | 0.39 | 0.29 | 0.94
CP 0.55 (034|042 | 095 | 0.68 | 0.50 | 0.57 | 0.81 | 0.26 | 0.51 | 0.35 | 0.95
CP+TW 0.69 | 0.28 | 040 | 093 | 0.72 | 0.44 | 0.55 | 0.83 | 0.34 | 0.42 | 0.37 | 0.95
CP+TW+HP 0.65 | 0.39 | 0.49 | 093 | 0.73 | 0.61 | 0.67 | 0.84 | 0.35 | 0.53 | 0.42 | 0.95

Table 5: Precision, recall, F-score and specificity of all the methods for three extraction tasks.

the performance for the three tasks. In Fig. 2
(a)-(c), precisions, recalls and F-scores are shown
for applying heuristic CP+TW and CP+TW+HP
(using top 100 patterns) with different numbers
of trigger stems. PPl and MIRGENE extraction
maintained a stable precision with increasing re-
call when the number of trigger stem increased.
For PLOC extraction precision decreased with in-
creased recall when more trigger stems were used,
indicating that the quality of the trigger stems can
be improved. Using 100 patterns to remove noise
resulted in much better recalls and F-scores for all
the three tasks across different numbers of trig-
ger stems, further confirming that heuristic HP
is an effective method to remove noise from the
negatively-labeled data.

Different numbers of patterns: we investi-
gated how different numbers of patterns used by
heuristic HP affect the results. In Fig. 2 (d)-(f),
precisions, recalls and F-scores are shown for ap-
plying CP+TW+HP (using top 50 trigger stems)
with different number of patterns. The perfor-
mances using heuristic CP+TW with 50 trigger
stems are included for comparison. We can see
that recalls can be consistently improved when
more patterns were used, with minor or no de-
crease in precision. Compared to the results only
using heuristic CP+TW, even using small number
of patterns can achieve better performance.

A major use case of biomedical relation ex-
traction is to help identify high-confidence entity
pairs to facilitate manual curation for databases.
Thus, a desired property of a relation extractor is
to achieve high precision for such high-confidence
extractions. Logistic regression model outputs a
probability for each test instance, and high proba-
bility indicates high confidence to be positive.

To investigate the performance of the proposed
methods for the high-confidence extractions, we
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draw precision-recall curves using the probability
produced by the logistic regression model. By def-
inition, logistic regression model predicts an in-
stance as positive if the probability is greater than
0.5. By varying the threshold, we can calculate
precisions at different recall levels. For example,
when the threshold is set to 0.9, the model only
predicts an instance with probability greater than
0.9 as positive. Ideally the model should achieve
better precision when the threshold is high.

For each task, six curves are drawn in Fig. 3.
We can see that using heuristic CP+TW+HP ob-
tained higher precisions than the baselines and
other heuristics on the left side of the figures,
which correspond to the performance for high-
confidence extractions. The multi-instance model
also obtained better precisions compared to the
baseline at lower recall levels. Specifically, by
using heuristic CP+TW+HP, PPI, MIRGENE and
PLOC extraction can achieve the highest preci-
sions among the six curves, which are 0.71, 0.95
and 0.77, respectively, at recall level 0.30.

6 Conclusion

In this paper, we proposed three novel heuristics
that use lexical and syntactic information to re-
move noise from labeled data generated by dis-
tant supervision. Experiments showed that the
proposed methods achieved significantly higher F-
scores than the baseline and previous works for
the three tasks, and high precision can be obtained
for high-confidence results. For future work, we
plan to improve the trigger stem list by asking cu-
rators to remove non-informative stems. Aggre-
gating evidences from all the sentences for entity
pair level extraction or incorporating direct super-
vision (Wallace et al., 2016) are two interesting di-
rections.

The code and data used in the experiments
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Figure 2: Results of using different numbers of trigger stems (a)-(c) and patterns (d)-(f). Markers:
precision (circle), recall (square), F-score (triangle). (a)-(c): CP+TW (solid) and CP+TW+HP (dashed).
(d)-(f): CP+TW (dashed) and CP+TW+HP (solid).

1.0

0.8

0.6

0.4

0.2

O'%.O 0.2 0.4 0.6 0.8 1.0 0% 0.2 0.4 0.6 0. 1.0
(b) MIRGENE (c) PLOC

Figure 3: Precision-recall curves for the three tasks. Y-axis represents precision and X-axis represents
recall. Markers: baseline (+), multi-instance (diamond), DPFreq (x), CP (square), CP+TW using 50
trigger stems (triangle), CP+TW+HP using 50 trigger stems and 100 patterns (circle).

of this paper are available at http://biotm. action extraction with evaluation of cross-corpus
cis.udel.edu/biotm/projects/ds. learning. BMC Bioinformatics 9 Suppl 11:S2.
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Abstract

Electronic medical records (EMR) have
largely replaced hand-written patient files
in healthcare.  The growing pool of
EMR data presents a significant resource
in medical research, but the U.S. Health
Insurance Portability and Accountability
Act (HIPAA) mandates redacting medical
records before performing any analysis on
the same. This process complicates ob-
taining medical data and can remove much
useful information from the record. As
part of a larger project involving ontology-
driven medical processing, we employ a
method of recognizing protected health in-
formation (PHI) that maps to ontologi-
cal terms. We then use the relationships
defined in the ontology to redact medi-
cal texts so that roles and semantics of
terms are retained without compromising
anonymity. The method is evaluated by
clinical experts on several hundred med-
ical documents, achieving up to a 98.8%
f-score, and has already shown promise
for retaining semantic information in later
processing.

1 Introduction

Medical health records data has immense poten-
tial for research in furthering the field of auto-
mated healthcare. Unfortunately, one of the chal-
lenges facing medical informatics is the dissemi-
nation and sharing of digital records for research
and analysis due to strict regulations regarding pa-
tient confidentiality. Protecting protected health
information (PHI) is a critical responsibility of
health care providers, with the U.S. Health Insur-
ance Portability and Accountability Act (HIPAA)
outlining a number of principles. Removing PHI
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can also mean removing critical parts of a record,
so building redaction techniques that preserve as
much information about the original data as possi-
ble while still retaining anonymity is an important
pre-processing step.

In this work, we discuss a redaction framework
for removing PHI from medical records through
de-identification. One of the primary goals of
this framework is to preserve valuable informa-
tion like roles, semantics, and time intervals as
much as possible. Because this forms the pre-
processing stage of future text processing, we
elected to model roles according to a formal on-
tology; this maintains relationships and enables
straightforward detection of ontological terms in
later phases.

2 Background

Knowledge buried in medical text is valuable, but
due to federal law protecting sensitive data, it must
be de-identified for distribution. Most existing
methods rely on rule-based systems that match
patterns and dictionaries of expressions that fre-
quently contain PHI. Sweeny’s Scrub tool uses
templates and a context window to replace PHI
(Sweeney, 1996). Datafly, also by Sweeny, offers
user-specific profiles, including a list of preferred
fields to be scrubbed (Sweeney, 1997). Thomas
developed a method that uses a lexicon of 1.8 mil-
lion names to identify people along with “Clin-
ical and Common Usage” words from the Uni-
fied Medical Language System (UMLS) (Thomas
et al., 2002). Miller developed a de-identification
system for cleaning proper names from records
of indexed surgical pathology reports at the Johns
Hopkins Hospital (Miller et al., 2001). Proper
names were identified from available lists of per-
sons, places and institutions, or by their proximity
to keywords, such as “Dr.” or “hospital.” The Perl
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tool Deid is a recent development which combines
several of these rule-based and lexical approaches
with some additional capabilities like better han-
dling of time (Neamatullah et al., 2008).

While identifying PHI for removal or
anonymization remains an open challenge,
simply redacting texts overlooks one of the
more fundamental aspects of recent biomedical
informatics, which has incorporated a focus on
ontology-driven development (Mortensen et al.,
2012; Ye et al., 2009; Tao et al., 2013; Sari
et al., 2013; Omran et al., 2009; Lumsden et al.,
2011; Pathak et al., 2009). In a domain like
healthcare — where information is dense, diverse,
and specialized — an ontology allows representing
knowledge in a usable manner, because it de-
scribes a framework for clearly defining known
terms and their relationships (Hakimpour and
Geppert, 2005; Lee et al., 2006; Pieterse and
Kourie, 2014; Strohmaier et al., 2013; Kapoor and
Sharma, 2010). Once the data has been formally
described via an ontology, new applications
become apparent. To provide several examples,
simply by formalizing electronic records as an
ontology, researchers have shared better ways to
represent patient care profiles (Riafio et al., 2012),
perform risk assessment (Draghici and Draghici,
2000), evaluate elderly care (Hsieh et al., 2015),
and more (Rector et al., 2009; Rajamani et al.,
2014).  Perhaps the greatest promise lies in
ontology-driven computational models, where the
structure of an ontology makes the data accessible
to programmatic operations, and there have been
several applications to the problem of automated
diagnosis (Bertaud-Gounot et al., 2012; Haug
et al., 2013; Hoogendoorn et al., 2016).

Some of these ontology-driven techniques do
consider redaction as it relates to the ontology. Of
particular note is the extensive work by South et
al. in identifying the exact types of PHI present
throughout the medical record according to risk
(South et al., 2014). Dernoncourt applied recur-
rent neural networks to the task of identifying PHI
by type to remove the need for large dictionaries
on the i2b2 dataset (Dernoncourt et al., 2016). In
the future, we hope to share a more direct con-
trast between our role-labeling and South et al.’s,
but our goals remain distinct from either South et
al. or Dernoncourt. Because our ontology cen-
ters around the medical encounter, we must lever-
age the EMR’s dynamic list of patients, caregivers,
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and providers to ensure roles are preserved accord-
ing to their specific encounter. In this way, our
work is more similar to Douglass’ MIMIC dataset,
which uses a patient list to assure role (Douglass
et al., 2004).

3 Methods

The core reasoning for our methodology is that
knowing the role of a redacted name can be vital,
and since we will be processing patient records at
the encounter-level, tying specific roles to single
encounters is necessary. For instance, was a con-
dition reported by the caregiver or by the clinician
and at what time? That is just a single question il-
lustrating the potential for confusion when names
are redacted without roles or ordering, yet, there
is no need to blindly attempt to extract roles from
free text. Nearly every EMR maintains structured
data like a patient’s name, family contact, and at-
tending physician. By leveraging this knowledge,
pseudonyms can be constructed that remove con-
fusion regarding roles in the final text.

To formally support role-preservation, we be-
gin by defining a very simple ontology to relate
key roles and terms. Patients are treated by clini-
cians and observed by caregivers. Treatments (or
interventions) are given on the basis of a medical
encounter, and, depending on the outcome, may
lead to more medical encounters or the end of the
record of care. This is a very basic means of mod-
eling roles in medical texts, but it supports cross-
domain redaction that preserves much of the se-
mantics and relationships after the anonymization
stage.

The redaction pipeline operates on data in two
stages to support better identification of roles in
the text. First, the structured data is used to extract
whatever knowledge is available, typically roles
like doctors and patients, to perform knowledge-
based redaction. Second, the unstructured text un-
dergoes entity recognition to clean missed terms.
While this approach requires some insight about
the data beforehand, it is a logical means of ensur-
ing we can remove all PHI without damaging roles
and relationships.

3.1 Structured

3.1.1 Patient-Centric Role Preservation

Our system initially builds a dictionary of known
individuals in each role. A person can have any
number of names of any length but all of them are



Table 1: Sample dictionary of names

Patients | Caregivers [ Providers
Original
Ira Jones Michael Jones Daniel Moore
Barbara Davis Mary Johnson
Redacted
Clarkcareaiver: | ClarkproviDER:
Clark
Clarkcarecivere | ClarkproviDERe

drawn directly from the fields in the EMR. In ac-
cordance with the ontology, patients will be iden-
tified first as the subject of care, a unique field in
most systems. Depending on the domain, there
will be a personal doctor, an attending physician,
or some other clinician name given in a separate
field. Caregivers may be drawn from locations like
billing or family contacts. For this part, knowl-
edge of the data structure is necessary, but once
the source fields are identified, they will be con-
sistent across the other records.

Once the dictionary of names and roles is built,
patients are assigned a pseudonym randomly from
a list of non-matching family names to provide
anonymity and linked to the pseudonym in the
dictionary. Subsequently, all individuals associ-
ated with that patient are assigned a derivative
pseudonym denoting their role. Consider the ex-
ample shown in Table 1. For this small dictionary
of a single patient, we see more than one caregiver
and provider listed. The system first replaces the
patient’s name, Patricia Jones, with a false name,
Clark. This identifier then becomes the basis for
all subsequent individuals with a connection to the
patient.

After the dictionary has been constructed, the
system knows all the original names and their new
pseudonyms. The medical texts are scanned for
any occurrence of any known name, ignoring case
or modifiers like possessive forms. Full names
will be on file, but given names and family names
may appear separately in the record. Regular ex-
pressions are used to match variants of names
while enforcing order.

3.1.2 Date Offsets

It is worth emphasizing the importance of dates
in medical record data. One can simply remove
or replace dates to redact PHI, as with names, but
just like names, we wished to preserve more infor-
mation in support of the ontology. In particular,
intervals between encounters or patient ages un-
der 89 are compliant with HIPAA and useful for
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tasks like association mining. A common solution
is to use offsets for dates because the original date
will be erased from the document without losing
intervals. However, an unconstrained random off-
set still loses information. For instance, intervals
given in the free text will be broken if a day of the
week is mentioned and then a date given. Our sys-
tem ensures intervals are undamaged by constrain-
ing date offsets in week-long intervals. Thus, even
if the dates are moved by years, there’s no loss in
day-granular intervals.

The date offset is applied across all records of a
single patient uniformly to maintain interval and
continuity of encounters. Furthermore, the sys-
tem is very flexible about handling dates in free
text, using as much knowledge as possible to piece
together correct, redacted dates. For example, a
snippet of a medical note may read: A surgery
was performed in 2005 to correct the issue; on
March 4, the patient...” Because the redaction sys-
tem makes use of the structured fields, it would
extract the date of entry for this medical note. As-
suming that date is March 7, 2006, the system will
move forward labeling unspecified years as 2006,
giving a means of differentiating the vague dates
2005 and March 7.

3.2 Unstructured

The second pass of de-identification also operates
over free text, but it does not make use of known
information such as the dictionary of names or the
dates of an entry. Instead, general attributes of po-
tential PHI are used to locate and remove sensitive
data. Email addresses, phone numbers, mailing
addresses, and medical case numbers are located
through common regular expressions. ZIP codes
are retained because they are not considered PHI
and can be useful for location-based operations.

Unknown entities appear frequently in the text
due to other names of people or places being writ-
ten that are not listed in the dictionary of names.
To account for these entities, Stanford’s CoreNLP
is used to detect any remaining entities in the text
which do not belong to a linked pseudonym (Man-
ning et al., 2014). All entities are redacted accord-
ing to their determined type, e.g. NAM FE1 for a
person or LOCATION1 for a place. Even in the
unstructured phase, sequential naming schemes
ensure unknown people and places do not become
confounded with any other entities.



3.3 Complete Pipeline

By the time the pipeline has finished, the text has
been run through two rounds of de-identification.
First, any useful knowledge is pulled from the data
in the EMR to build a dictionary for rule-based
redaction that preserves roles. Second, operat-
ing without any knowledge, a set of regular ex-
pressions and more sophisticated entity recogni-
tion methods are employed to clear other sensi-
tive data without adding ambiguity or destroying
valuable non-PHI information. The inclusion of
CoreNLP in the final part supports more advanced
language models than simply using rules and regu-
lar expressions. This allows the complete pipeline
to capture almost any potential PHI while still rec-
ognizing known entities, particularly those rele-
vant to the ontology, or types of entities, such as
contact numbers of locations.

4 Evaluation

We worked with data sets from two different do-
mains — veterinary and hospice care. Fortunately,
due to the cross-domain design of our ontology,
there was little difficulty in identifying fields that
mapped to elements of the ontology. Upon defin-
ing this mapping, huge portions of text from both
domains were pushed through the full pipeline.
The resulting text included ontological terms and
other marked regions, e.g. ZIP codes, while re-
moving as little other information as possible.
Ideally, the final medical texts appear identical
to the original files with only the PHI removed. To
evaluate this, a team of clinical experts reviewed
hundreds of documents, marking missed PHI or
text that was unnecessarily redacted in each. From
the veterinarian domain, where we studied com-
plete discharge summaries (DS), two medical doc-
tors reviewed 122 cases. From the hospice do-
main, which operated on shorter clinical notes
(CN), the same experts reviewed 500 notes. To
provide a simple baseline for comparison, we also
tested a single rule-based approach for matching
patient names against a data set of 15 documents.
As we see in Table 2, the system performed
very well at correctly identifying PHI and non-
PHI, especially in contrast with the patient-names
baseline. In the discharge summaries, the ma-
jority of false negatives were due to previously-
unnamed doctors who were neither in the dictio-
nary nor detected during entity recognition. Only
one misspelling of a patient name was detected.
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Table 2: Word-level metrics for baseline (BL), dis-
charge summaries (DS), and clinical notes (CN)

Count BL DS CN
False Negatives | 498 76 4
False Positives 0 5 250
True Positives 63 3391 1655
True Negatives | 17191 | 75694 | 50460

Table 3: Performance of baseline (BL), discharge
summaries (DS), and clinical notes (CN).

Metric BL DS CN

Specificity | 100% | 99.9% | 99.5%
Sensitivity | 11.2% | 97.8% | 99.8%
Precision 100% | 99.9% | 86.9%
F-Score 20.2% | 98.8% | 92.9%

In the clinical notes, there were a great deal more
false positives. Because the final step incorporates
CoreNLP, certain texts will include many entities
that are not PHI. Table 3 shows that specificity,
sensitivity/recall, and precision are high for both,
although the precision for clinical notes suffers
due to the many false positives. While the baseline
achieves high precision by matching only patient
names, the lower sensitivity and f-score demon-
strate the high number of PHI belonging to other
categories that the full system captures.

5 Conclusion and Ongoing Work

Medical records can provide a wealth of informa-
tion for data scientists but due to their sensitive
nature, are often limited in availability. Effective,
reliable redaction is the best known solution to the
problem, but most techniques will lose exact de-
tails like encounter-level roles. In this work, we
integrate knowledge and model-based approaches
to augment redaction. In future works, we seek to
share some of the benefits we have seen using roles
to create better semantic clusters and word models
than achieved through only pseudonyms. We hope
that such de-identification pipelines, highly cog-
nizant of the original data structure, will encour-
age a future of richer and more capable ontology-
driven analysis.
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Abstract

Pain and anesthesia information are cru-
cial elements to identifying surgery-
related processes and outcomes. How-
ever pain is not consistently recorded in
the electronic medical record. Even when
recorded, the rich complex granularity of
the pain experience may be lost. Simi-
larly, anesthesia information is recorded
using local electronic collection systems;
though the accuracy and completeness of
the information is unknown. We propose
an annotation schema to capture pain, pain
management, and anesthesia event infor-
mation.

1 Introduction

Post surgical pain continues to be a challenging
problem for the health system. Firstly, continued
pain after surgery, or chronic persistent postsurgi-
cal pain, is common with about 20% of patients
having pain long after the wounds have healed
(Neil and Macrae, 2009; Kehlet et al., 2006). Sec-
ondly, inadequate acute post operative pain con-
trol contributes to adverse events such as impaired
pulmonary function and impaired immune func-
tion (White and Kehlet, 2010). Finally, post surgi-
cal pain can be a gateway to addiction, which has
taken on increased urgency with the current opioid
crisis (Waljee et al., 2017). To improve these prob-
lems, it is crucial to have a clear understanding of
the patients’ pain and its treatments.

There is some evidence that different inter-
ventions such as the use of multi-modal pain
management and different anesthesia types, e.g.
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use of regional anesthesia and nonsteroidal anti-
inflammatory drugs, can improve pain manage-
ment (Baratta et al., 2014). However, different
analgesic treatments have different side-effect pro-
files; moreover, some treatment combinations are
not appropriate for certain populations. Further-
more, genetics, age, prior exposure to surgery, and
social norms influences the experience of pain.
Therefore, there is a clear need to capture anes-
thesia and pain information and relate them to in-
dividual history, social, and genetic factors to im-
prove surgical outcomes.

Even with mandated collection, pain is not al-
ways recorded (Lorenz et al., 2009). Even when
recorded as structured data, there are a variety
of scales that are institution-dependent, e.g. a
site-specific 0-10 numeric rating scale or a multi-
dimensional questionnaire such as the Brief Pain
Inventory. Additionally, it is difficult to cap-
ture the rich complex characteristics of pain in
structured ways. Anesthesia type, on the other
hand, may be recorded or inferred from proce-
dures, medications, or structured input as part of
surgery documentation. However, such recording
practices differ by institution and local software.

In this work, we present annotation schemas
for pain, pain treatment, and anesthesia events for
text extraction, as well as report on inter-annotator
agreement and corpus statistics. The ultimate goal
is to build a new system or adapt an existing sys-
tem, using this annotated corpus, to automatically
extract such information from clinical free text.
The extracted data could then be used to comple-
ment missing structured information, facilitating
greater opportunities for longitudinal study of pa-
tients’ pain experience long after initial surgery.

Proceedings of the BioNLP 2017 workshop, pages 200205,
Vancouver, Canada, August 4, 2017. (©2017 Association for Computational Linguistics



2 Related work

To our knowledge, there is no systematic creation
of a pain annotation schema for text extraction,
however we reference two extraction systems that
identify pain information based on their own tar-
geted needs. (Heintzelman et al., 2013) created
a system that extracted pain mentions, severity,
start date, end date. Their annotation was based
on a created 4-value severity of pain created by
the development team. Items were identified using
the Unified Medical Language System (UMLS)
vocabularies for dictionary look-up (Bodenreider,
2004). Dates and locations were extracted by de-
veloped contextual rules. In another work, (Redd
et al., 2016) used a series of regular expressions
to extract pain score in intensive care unit notes.
In contrast to previous works, our work provides
a more detailed set of annotations that include dif-
ferent clinical aspects of pain, as well as two other
event types (treatment and anesthesia) important
for studying outcomes. Similarly, there has not
been any work on anesthesia-specific annotation
and extraction.

Relating this work to a larger context, our
pain, treatment, and anesthesia event annotations
can be thought of as more specific reincarna-
tions of the CLEF corpus and i2b2 event annota-
tions (Roberts et al., 2008; Uzuner et al., 2011).
For example, under the CLEF annotation schema,
pain would fall under the condition entity, with
the pain’s location aligning to CLEF’s locus/sub-
location/locality schema. Drug, intervention, and
negation for conditions are also elements we cap-
ture in our annotation schema. Under the i2b2/VA
2010 concepts, assertions, and relations challenge
schema, pain would be considered a medical prob-
lem and pain treatments or anesthesia could be
identified treatments. Our annotation of status’ are
related to assertion and relations between pain and
treatment function similarly to their medical prob-
lem treatment relations. Pain and treatment an-
notation can also be compared to medication and
adverse drug events, where instead the focus of
events are on pain symptoms and treatment con-
cepts (Uzuner et al., 2010; Karimi et al., 2015).

3 Corpus creation

We drew data from two sources (1) Stanford Uni-
versity’s (SU) Clarity electronic medical record
database, a component of the Epic Systems soft-
ware, and (2) MTSamples.com, a online source of
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anonymized dictated notes. With approval of an
institutional review board, we identified a cohort
of surgical patients that underwent 5 procedures
associated with high pain: distal radius fracture,
hernia replacement, knee replacement, mastec-
tomy, and thoracotomy. We focused on three
note types: anesthesia, operative, and outpatient
clinic visit notes. Anesthesia and operative notes
were sampled from the day of surgery, whereas
clinic notes were randomly sampled within 3
months prior and 1 year after the surgery. Because
of the variation in clinic notes, we performed
stratified random sampling per sub-note type and
per surgery category.

From MTsamples, we isolated operative
(surgery) and clinic visit notes. Clinic notes were
considered those not grouped into specialized
categories, e.g.  surgery, autopsy, discharge.
Frequencies by type are shown in Table 1.

Corpus Anesthesia Clinic Operative
MTsamples - 90 75
SU 90 90 75
TOTAL 90 180 150

Table 1: Breakdown of note types

4 Guideline Creation

Annotation guidelines were created iteratively
with a medical general practitioner as well as a
biomedical informatics scientist. The initial pain
event schema was derived from existing literature
(Fink, 2000) and cues from Stanford Health Care’s
pain collection practices. Schemas were designed
and altered according to feedback from a surgical
attendee and an anesthesiologist.

Our annotation focuses on three event types:
pain, treatment, and anesthesia events. Below is
a description of the entities (in some cases phrasal
highlights) for each type of event. Those concepts
marked with a * are event heads for which other
entities may attach to.

Pain information:

Pain* - indication of pain including signs and
symptoms that denote pain or diseases definition-
ally characterized as pain, e.g. “myalgia”, with
attributes  Goal:{binary} and Status:{Current,
Past, None, Unknown, Not Patiem‘}

Description - descriptive characteristics of the
indicated pain, e.g. “burning”

Frequency - information regarding periodic oc-
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Pa Pa [Description] [Cocation [Right][Ceg]] [Frequency]

The patient is reporting ongoing, chronic  right-sided back pain, pain that radiates down her right leg intermittently.
Location-Arg - .
Location [Right][Knee]  tocation” " A Nz 9% A rrgger Tmressel)
RIGHT KNEE: She has a minimal effusion and has medial facet tenderness to palpation.
Figure 1: Example pain and treatment events
i Treatment* - possible treatments for pain

PreIncisionallntervention

Anesthesia: Bilateral paravertebral block, general endotracheal

Figure 2: General and nerve block anesthesia text

Prelncisionallntervention _

PreIncisionallntervention
Plan MAC-Local
discussed and patient wishes to proceed

R/B/IA

Figure 3: MAC and local anesthesia text

curence of the indicated pain, e.g. “occasional”
Location - location of pain, with attributes Lat-
erality:{Bilateral, Left, Right, Unspecified} and
Type:{Abdomen, Ankle, Arm, Back, Back-lower,
Back-upper, Breast, Buttocks, ChestArea, Ear,
Elbow, Eye, Foot, Generalized, Groin, Hand,
Head, Hip, Incisional, Jaw, Knee, Leg, Mouth,
Neck, Nose, Pelvis, Shoulder, Throat, Wrist,
Other} (This attribute is useful for matching with
structured data that pre-specify locations)
Severity - severity of pain, with attribute Sever-
ityattribute: {0,1,..10, mild, moderate, severe }
Temporal - demarkations of time points at which
pain occurs, including time relative to events
Treatment - interventions used on patient (see
next section for more information)

Trend - trend of pain with attribute TrendAt-
tribute: {Increasing, Decreasing, No change}
Trigger events that cause some
change in pain, with attribute TriggerAt-
tribute:{Increase,Decrease}

Treatment information:

Effectiveness - Effectiveness of treatment with
attributes  EffectivenessAttribute: ~ {Alleviates,
Worsens, No change}
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with attributes Type:{Acupuncture, Electrother-
apy, Heat/cold therapy, Medication, No further
action, Other, Physical Therapy, Steroid injection,
Surgical procedure} and Status:{Current, Past,
None, Planned, Requested, Recommended, Con-
ditionalRecommended, NotPatient}

Temporal - demarkations of time points at which
treatment occurs, including time relative to events

Anesthesia information:

Pre-incisional intervention* anesthetic in-
tervention that occurs prior to incision, with
attributes Status:{Current, Past, None, Planned,
Requested, Recommended, NotPatient} and
Type:{General, Regional-unspecified, Nerve
block, Spinal block, Epidural, MAC (monitored
anesthesia care), Local inﬁltration}

Event heads, e.g. treatment, were always anno-
tated whereas event arguments, e.g. effective-
ness, were only annotated when an event head was
present. Only pain medications defined in a cu-
rated list (or its synonyms) were annotated as treat-
ment entities to avoid medical knowledge reliance.
To avoid annotation fatigue, Status attributes were
unmarked if Current.

5 Annotation

After development of an initial schema, a random
sample of documents from each SU and MTSam-
ples of anesthesia, operative, and clinical notes
were drawn to measure inter-annotator agreement
between a general practitioner and a biomedical
informatics scientist. Pain and treatment events
were annotated for clinical notes, whereas only
pre-incisional intervention events were annotated



Field Setl Set2 Setl+2 Full
Description 1.00 0.250 0.625 36
Effectiveness - 0.833  0.769 22
Frequency 0.889 0.909 0.900 36
Location 0.800 0.870 0.832 512
Pain 0912 0947 0929 613
Severity 0966 0914 0921 88
Temporal 0.500 0.698 0.628 200
Treatment 0.686 0.832 0.791 671
Trend 0.770  0.00 0.625 21
Trigger 0.884 0.851 0.839 128
ALL 0.797 0.858 0.831 2327

Table 2: IAA and counts for clinic note entities

Field Setl Set2 Setl+2 Full
EffectivenessAttribute - 0.333  0.308 21
Laterality Attribute 0.758 0.804 0.774 101
LocationAttribute 0.737 0.716  0.700 457
Goal - 0920 0911 16
Pain:StatusAttribute 0.756 0.885 0.822 201
SeverityAttribute 0.966 0.778 0.843 87
Treatment:Type 0.647 0.773 0.744 654
Treatment:StatusAttribute  0.595 0.569  0.597 499
TrendAttribute 0.769 0.00 0.625 21
TriggerAttribute 0465 0.766 0.602 126
ALL 0.697 0.766 0.749 2183

Table 3: IAA and counts for clinic note attributes

for anesthesia and surgery notes.

An initial set (Setl) included 15 clinic and 15
operative notes from MTSamples; and 30 anes-
thesia, 15 clinic, and 15 operative notes from SU.
Two rounds of revision and agreement were per-
formed on this set. Changes or adjustments to an-
notation guidelines were made as necessary during
annotator agreement cycles. Because clinic notes
presented more complexity, we drew another 15
documents from MTSamples and 15 from SU re-
sulting in a new subset (Set2). EffectivenessAt-
tribute and Goal attributes were added from the
second set onwards. Two rounds of revisions were
performed on this set. Finally, the combined set
was revised. The remaining corpus (60 anesthe-
sia, 120 clinic, 120 operative notes) was evenly
split and single-annotated by the two annotators.
‘We used brat, a web-based software, for our anno-
tation (Stenetorp et al., 2012).

Inter-annotator agreement (IAA) was evaluated
using F1 measure, the harmonic mean of positive
predictive value and sensitivity, for entities, re-
lations, and attributes (Hripcsak and Rothschild,
2005). All reported measures are based on par-
tial matches (text spans need only to overlap). For
this, relations require that corresponding entity ar-
guments overlap with accurate relation labels.
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Field Setl  Set2 Setl+2 Full
Description-Arg ~ 0.667 0.250  0.533 38
Effectiveness-Arg - 0.909  0.909 23
Frequency-Arg 0.923 0.769 0.846 37
Location-Arg 0.738 0.864 0.795 520
Severity-Arg 0.968 0.889  0.909 91
Temporal-Arg 0449 0.738 0.620 221
Treatment-Arg 0.800 0.500 0.522 41
Trend-Arg 0.769 0.00  0.625 21
Trigger-Arg 0.883 0.773 0.800 131
ALL 0.744 0.797 0.760 1123

Table 4: TAA and counts for clinic note relations

Field Setl Set2 Setl+2 Full
Type 0.906 - 0.906 257
StatusAttribute  0.898 - 0.898 40

ALL 0.902 - 0.902 297

Table 5: TAA and counts for anesthesia note at-
tributes

Field Setl Set2 Setl+2 Full
Type 0.935 - 0.935 237
StatusAttribute  0.860 - 0.860 5

ALL 0.897 - 0.897 242

Table 6: IAA counts for operative note attributes

6 Results

Tables 2-6 show final agreement levels for the sep-
arate sets of inter-annotator documents and then
for the full inter-annotator corpus for the entities,
attributes, and relation levels. We also report the
frequencies of each field for the full corpus.

For clinic notes, 125 documents had at least one
entity, with 19 £ 19 entities, 10 4= 11 relations
per non-empty report. Table 7 shows the top 90%
of unique co-occurring relation combinations at-
tached to the same pain entity. Most pain enti-
ties appeared either without attached relations or
with a Location-Arg. For treatment entities not at-
tached to pain entities as an argument (632 enti-
ties), 74% had no attachments, 24% were attached
to a Temporal-Arg alone, the rest had either an
Effectiveness-Arg relation alone or both. Most re-
lations existed within a close context, however a
small number did appear at 2 or more sentences
away. This included 10% of Trigger-Arg, 7% of
Treatment-Arg, 2% of Severity-Arg, and 2% of
Temporal-Arg relations. The remaining relations
appeared on the same or one sentence away.

Identification of pain and treatment events for
clinical notes was relatively challenging. Ten enti-
ties with their related attributes, as well as 8 re-
lation types were involved. Moreover, clinical



Top co-occurring relations for same pain  Count Fraction Cum. Fract.

0.465 0.465
0.073 0.538

{Location-Arg}

{

{Trigger-Arg} 35 0.057 0.595
{Location-Arg, Trigger-Arg} 28 0.046 0.641
{Location-Arg, Temporal-Argv} 26 0.042 0.684
{Severity-Arg} 22 0.036 0.719
{Location-Arg, Severity-Arg} 18 0.029 0.749
{Description-Arg, Location-Arg} 16 0.026 0.775
{Frequency-Arg, Location-Arg} 16 0.026 0.801
{Severity-Arg, Trigger-Arg} 12 0.020 0.821
{Location-Arg, Treatment-Arg} 9 0.015 0.835
{Temporal-Arg} 9 0.015 0.850
{Treatment-Arg} 8 0.013 0.863
{Trend-Arg} 8 0.013 0.876
{Location-Arg, Severity-Arg, Trigger-Arg} 7 0.011 0.887
{Effectiveness-Arg, Treatment-Arg} 5 0.008 0.896
{Location-Arg, Trend-Arg} 5 0.008 0.904

Table 7: Frequency of relation-combinations con-
necting to same pain entity

notes tend to contain unpredictable expressions,
e.g. “pain [...] waxing and waning” or “worse
with hiking”, and narrative information that spans
over several sentences, the conclusion of which
could communicate a resolved status. Thirteen out
of 613 mentions of pain were attributed as past.
Out of 126 marked TriggerAttributes, 114 were
aggravating factors (Increase), with only 12 men-
tions of alleviating factors (Decrease). Interest-
ingly, many severity attributes were qualitative de-
scriptions with 22 for mild, 13 for moderate, and
23 for severe out of 87 total marked. For treatment
types, of 654 identified treatment types, 428 were
surgical procedures, 116 medication, 82 physical
therapy, 12 steroid injection. The remaining had
frequencies of 3-5 each.

Ideologically, there were nuances to annotating
pain information. While the easiest references to
pain were trivial, e.g. pain, some required ref-
erencing dictionaries, e.g. myalgia, or reading
context, e.g. discomfort. Distinguishing between
cause of and timing for pain was not always clear.
For example, in “pain is worse in the morning”
and “pain [...] when running”, both underlines
could be considered as either Trigger or Tempo-
ral. Our final decision was to mark as a Trig-
ger when believed to be causal of the pain rather
than delineating chronology. Some pain attributes
had multiple connotations. For example, “chronic
pain”, defined as presence of pain for longer than
3 months, has both a duration and frequency con-
text. We decided to assign chronic as a description
attribute. Extent of decisions were specified in an-
notation guidelines. Finally, there are unavoidable
limitations in text interpretation. For example, in
“patient is very tender to palpation”, very may be
normalized to moderate or severe based on anno-
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tator subjectivity. Furthermore, pain may be sug-
gested but not explicitly stated, e.g. “woman [...]
with [...]  debilitating abdominal wall hernias”
(most likely painful), and therefore not captured.

Anesthesia and operative note entity agreement
was at 0.923 F1 and 0.934 F1. There was a to-
tal of 235 and 254 entities for anesthesia and op-
erative notes. For anesthesia reports, 72 had at
least one entity, with 4 £ 5 entities each; oper-
ative reports, 130 had at least one entity, with 2
4 1 entities each. 15% of Pre-incisional inter-
vention entities were marked as Planned for anes-
thesia reports; 1% for operative reports. Agree-
ments for operative and anesthesia entities and at-
tributes were high (Table 5 and 6). This is due
to the focused nature of these domains. How-
ever, our annotation schema did not include im-
plicit references, e.g. “skin was anesthetized with
1% lidocaine solution” where lidocaine is often
used for local anesthesia.

To improve IAA, further annotation would ben-
efit from pre-annotation of entities trained on this
starting set. This would increase consistency and
throughput. Additional annotation of a larger cor-
pus would provide larger samples sizes to estimate
task challenge for less populated classes.

7 Conclusions and Future Work

In this work, we present a rich annotation schema
for pain and pain interventions, as well as an an-
notation categorization for anesthesia types. Al-
though this work was developed in the surgical
setting, the pain annotation schema presented here
can be adapted for other settings. Future work in-
cludes building our extraction system and apply-
ing these data to assess important patient outcomes
and health services research.

Annotation guidelines and the MTSamples por-
tion of our corpus is available through our group’s
website (med.stanford.edu/boussard-lab.html).
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Abstract

Comparison sentences are very commonly
used by authors in biomedical literature
to report results of experiments. In such
comparisons, authors typically make ob-
servations under two different scenarios.
In this paper, we present a system to au-
tomatically identify such comparative sen-
tences and their components i.e. the com-
pared entities, the scale of the comparison
and the aspect on which the entities are be-
ing compared. Our methodology is based
on dependencies obtained by applying a
parser to extract a wide range of compar-
ison structures. We evaluated our system
for its effectiveness in identifying compar-
isons and their components. The system
achieved a F-score of 0.87 for compari-
son sentence identification and 0.77-0.81
for identifying its components.

1 Introduction

Biomedical researchers conduct experiments to
validate their hypotheses and infer associations be-
tween biological concepts and entities, such as
mutation and disease or therapy and outcome. It
is often not enough to simply report the effects of
an intervention; instead, the most common way to
validate such observations is to perform compar-
isons. In such studies, researchers make observa-
tions under two different scenarios (e.g., disease
sample vs. control sample). When the differences
between the groups are statistically significant, as-
sociation can be inferred.

Comparative studies are prevalent in nearly ev-
ery field of biomedical/clinical research. For ex-
ample, in the experimental approach known as
“reverse genetics”, researchers draw inferences
about gene function by comparing the pheno-

type of a gene knockdown sample to that of a
sample expressing the gene at the normal level.
In clinical trial studies, researchers study the ef-
fectiveness or side-effects of a drug compared
to a placebo. A simple PubMed query “com-
pared[TIAB] OR than[TIAB] OR versus[TIAB]”
returned 3,149,702 citations, which provides a
rough estimate of the pervasive nature of compar-
isons in the biomedical literature. Thus, devel-
opment of automated techniques to identify such
statements would be highly useful.

Comparative sentences typically contain two (or
more) entities, which are being compared with re-
spect to some common aspect. Consider sentence
(1), which compares gene expression level in can-
Cerous Vvs. non-cancerous tissues:

(1) The expression of GPC5 gene was lower in
lung cancer tissues compared with adjacent
noncancerous tissues.

Typically, the entities, which we will refer as
compared entities, are of the same type. In the ex-
ample, the entities being compared are two tissues:
“lung cancer tissues” and “adjacent noncancerous
issues”, which are separated by the phrase “com-
pared with”. “Expression of GPC5 gene”, which
we call the compared aspect, is the aspect on
which comparison between the two entities is be-
ing made. The word “lower” indicates the scale
of the comparison, thereby providing an ordering
of the compared entities with respect to the com-
pared aspect. These definitions are similar to those
described in (Park and Blake, 2012).

In this paper, we describe a system to au-
tomatically identify comparative structures from
text. We have developed patterns based on sen-
tence syntactic dependency information to identify
comparison sentences and also extract the various
components (compared aspect, compared entities
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and scale). The developed system identifies ex-
plicit comparative structures at the sentence level,
where all the components of the comparison are
present in the sentence. The main challenge is to
capture patterns at a sufficiently high level given
the sheer variety of comparative structures. In the
rest of the paper we will define the task, describe
our approach and comparison patterns and present
the results of our evaluation. We achieved a F-
score of 0.87 for identifying comparison sentences
and 0.78, 0.81, 0.77 for extracting the compared
aspect, scale indicator and compared entities, re-
spectively. Thus the major contributions of this
work are:

e Development of a general approach for iden-
tifying comparison sentences using syntactic
dependencies.

e Development of methods to extract all of the
components of the comparative structure.

2 Related Works

The sentence constructions used to make compar-
isons in English are complex and variable. Bres-
nan (1973) discussed the syntax of comparative
clause construction in English and noted its syn-
tactic complexity, ‘exhibiting a variety of gram-
matical processes’. Friedman (1989) reported a
general treatment of comparative structures based
on basic linguistic principles and noted that auto-
matically identifying them is computationally dif-
ficult. They also noted that comparative struc-
tures resemble and can be transformed into other
syntactic forms such as general coordinate con-
junctions, relative clauses, and certain subordinate
and adverbial clauses and thus ‘syntactically the
comparative is extraordinarily diverse’. In (Staab
and Hahn, 1997), the authors proposed a model of
comparative interpretation that abstracts from tex-
tual variations using descriptive logic representa-
tion.

The above studies provide an analysis of com-
parative sentences from a linguistic point of view.
Computational systems for identifying compar-
isons have also been developed. Jindal and Liu
(2006a) proposed a machine learning approach to
identify comparative sentences from text. The sys-
tem first categorizes comparative sentences into
different types, and then presents a pattern dis-
covery and supervised learning approach to clas-
sify each sentence into two classes: compara-
tive and non-comparative. Class sequential rules
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based on words and part-of-speech tags automat-
ically generated while learning the model were
used as features in this work. The authors eval-
uated their classifier on product review sentences
containing comparison between products and re-
ported a precision of 79% and a recall of 81%.
The authors extended their work (Jindal and Liu,
2006b) to extract comparative relations i.e. the
compared entities and their features, and com-
parison keywords from the identified comparison
sentences. In (Xu et al., 2011), the authors de-
scribed a machine learning approach to extract
and visualize comparative relations between prod-
ucts from Amazon customer reviews. They de-
scribe a comparative relation as a 4-tuple, con-
taining the two compared products, the compared
aspect and a comparison direction (better, worse,
same). They reported a F-score of 38.81% using
multi-class SVM and 56.68% using Conditional
Random Fields (CRF). (Jindal and Liu, 2006b; Xu
etal., 2011) are the only works that extract the dif-
ferent components of the comparison. In (Ganap-
athibhotla and Liu, 2008), the authors focused on
mining opinions from comparative sentences from
product review sentences and extracting the pre-
ferred product. Yang and Ko (2009) proposed a
machine learning approach to identify compara-
tive sentences from Korean web-based text but did
not address the extraction of the comparison ar-
guments. They first constructed a set of compar-
ative keywords manually and extracted candidate
comparative sentences and then used Maximum
Entropy Model (MEM) and Naive Bayes (NB)
to eliminate non-comparative sentences from the
candidates.

Relatively few works on identifying com-
parative sentences and/or its components from
biomedical text have been developed. Park and
Blake (2012) reported a machine learning ap-
proach to identify comparative claims automati-
cally from full-text scientific articles. They in-
troduced a set of semantic and syntactic features
for classifications using three different classifiers:
Naive Bayes (NB), a Support Vector Machine
(SVM) and a Bayesian network (BN). They evalu-
ated their approach on full-text toxicology articles
and achieved F1 score of 0.76, 0.65, and 0.74 on
a validation set for the NB, SVM and BN, respec-
tively. The focus of this work was on identify-
ing comparison sentences and the extraction of its
components was not addressed.



Fiszman et al. (2007) described a technique to
identify comparative constructions in MEDLINE
citations using under-specified semantic interpre-
tation. The authors used textual patterns com-
bined with semantic predications extracted from
the semantic processor SemRep (Rindflesch and
Fiszman, 2003; Rindflesch et al., 2005). The
predications extracted by SemRep are based on
the Unified Medical Language System (UMLS)
(Humphreys et al., 1998). Their system extracts
the compared entities (limited to drugs) and the
scale of the comparison. They reported an aver-
age F-score of (.78 for identifying the compared
drug names, scale and scale position. To the best
of our knowledge, (Fiszman et al., 2007) is the
only reported work that goes beyond identification
of comparison sentences to identify the different
components of the comparison in biomedical text.
But unlike our work, theirs is limited to compari-
son between drugs, does not extract the compari-
son aspect and appears to be limited in their cov-
erage of comparison structures.

3 Method
3.1 Task Definition

Basic comparison sentences contain two or more
compared entities (CE) and a comparison as-
pect (CA) on which compared entities are being
compared. Additionally, there are two parts in
such sentences indicating the comparison. The
first is the presence of a word that indicates the
scale of the comparison and the other separates the
two compared entities. The former is often com-
parative adjectives or adverbs (such as “higher”,
“lower”, “better”, etc.), while the latter can be ex-
pressed with phrases or words (such as “than”,
“compared with”, “versus” etc.). We will refer to
the former comparative word indicating the scale
as the Scale Indicator (SI) and the latter, separat-
ing the entities, as the Entity Separator (ES). In
example (2) below the key parts of such a compar-
ison structure are highlighted.

(2) [Arteriolar sclerosis]ca Wwas significantly
highers; in addictscg thangs controlscg.

Jindal and Liu (2006b) categorized comparative
structures into four classes: (1) Non-Equal Grad-
able, (2) Equative, (3) Superlative and (4) Non-
Gradable. Non-Equal Gradable comparison indi-
cate relations of the type greater or less than, pro-
viding an ordering of the compared entities. Equa-
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tive structures indicate equal relation between the
two entities with respect to the aspect. Com-
parisons where one entity is “ better” than all
other entities are termed as Superlative. Sentences
in which the compared entities are not explicitly
graded are called Non-Gradable.

Based on our previous discussion, we will be
addressing only the first two types: Non-Equal
Gradable and Equative comparison. First, we
consider processing at the sentence-level only.
While there are cases of comparisons, where the
context provided by a larger body of text might
provide the information about all the components,
they are not considered in this work. Thus most
of the superlative cases will not be considered be-
cause all the compared entities are rarely men-
tioned within a single sentence. It also rules out
cases such as in Example (3a), where the second
compared entity must be inferred from previous
sentences. Second, we consider only those sen-
tences where the authors mention the result or con-
clusion of an experiment/study. Thus, we will not
consider sentences such as in Example (3b), since
it only mentions the intention to perform a com-
parison but does not indicate the result of the ex-
periment. While such sentences can still be cap-
tured with minor changes to our existing patterns,
our goal here is to only consider sentences that in-
dicate the results of experiment by means of com-
parison. The patterns developed in this work iden-
tify explicit comparative structures at the sentence
level and extract all components of the comparison
relations, i.e., the compared aspect, entities and the
scale indicator.

(3) a. Mean procedure time was significantly
shorter for the percutaneous procedure.

b. We compared lesion growth between
placebo and tissue plasminogen activator-
treated patients.

3.2 Approach

The different steps of our system are depicted
in Figure 1. Given an input text, typically a
Medline abstract, we first tokenize and split the
text into sentences using the Stanford CoreNLP
toolkit (Manning et al., 2014). We then use the
Charniak-Johnson parser (Charniak, 2000; Char-
niak and Johnson, 2005) with David McClosky’s
adaptation to the biomedical domain (Mcclosky,
2010) to obtain constituency parse trees for each
sentence. Next we use the Stanford conversion



tool (Manning et al., 2014; De Marneffe et al.,
2014) to convert the parse tree to into the syntac-
tic dependency graph (SDG). We use the “CCPro-
cessed” representation, which collapses and prop-
agates dependencies allowing for an appropriate
treatment of sentences that involve conjunctions.
Note that “CCProccessed” is helpful as dependen-
cies involving preposition, conjuncts, as well as
referent of relative clauses are “collapsed” to get
direct dependencies between context words. Thus,
as seen in Figure 2, which shows the “CCPro-
cessed” SDG, there is a direct edge from “lower”
to the cells in the Noun Phrase (NP) “Hep3B cells”
rather than a path with two edges where the first
reaches the preposition “in” and the second from
“in” word to the word “cells”. This simplifies the
pattern development in relation extraction.

Based on this syntactic dependencies represen-
tation, we have developed patterns to identify the
different arguments of the comparison relation.
Next we use Semgrex, which is a part of the Stan-
ford NLP Toolkit, to specify the translated patterns
as regular expressions based on lemmas, part-of-
speech tags, and dependency labels, which will au-
tomatically match with the sentence dependency
parse structure. We have developed a total of
35 and 8 patterns to identify Non-Equal Gradable
and Equative comparisons respectively. The de-
veloped Semgrex rules as well as the evaluation
test set can be found at the link below!. Each Sem-
grex rule/pattern identifies all components of the
comparison, specifically the head of the compar-
ison aspect, entities and scale. Since the compo-
nents are typically Noun Phrases (NPs), we look at
the outgoing edges from the head nouns to obtain
the NPs corresponding to the comparison compo-
nents. In the next subsection, we will discuss the
development of different comparison patterns.

3.3 Comparative Patterns

As discussed earlier in subsection 3.1, the two key
parts in a basic comparison sentence are a Scale
Indicator (SI), indicating the scale of the compar-
ison and a Entity Separator (ES), separating the
compared entities. We will use dependencies from
these SI and ES words to extract the compared
aspect and the compared entities. We have de-
veloped rules based on syntactic dependencies for
various combinations of the two keys parts. We
broadly categorize our comparison patterns based

"http://biotm.cis.udel.edu/biotm/projects/comparison/

Abstract Text}...___.{ Preprocessing ]

Sentences

Charniak-
Johnson Parser

Parse Trees

SDG
Construction

Dependencies

Pattern Comparison
Matching | Output

Comparison >[
Patterns

Figure 1: Comparison Pipeline.

nmod:in

nmod:in

case
nsubj
cop
was lower in |HepG2 cells| than in {Hep3B cells
Figure 2: Example SDG

on the Scale Indicator word indicating either Non-
Equal Gradable or Equative Comparison.

3.3.1 Non-Equal Gradable

Non-Equal Gradable comparison indicates a dif-
ference between the compared entities. Based on
three part-of-speech tags (POS) of the Scale In-
dicator, different syntactic structures are possible,
as described below. Note that in all the figures de-
picting the dependency graph the compared aspect
is highlighted in blue and the compared entities in
yellow.

Comparative Adjective: Starting with the most
frequent case for Scale Indicator, which is a com-
parative adjective(JJR) such as “better”, “higher”,
“lower” etc., there are two broad categories of syn-
tactic structures which we consider. The first cat-
egory involves copular structures, where the JJIR
serves as the predicate of the comparison relation.
The compared aspect is typically the subject of the
JIR as shown in Figure 3a. Thus we follow the
nsubj edge from the JJR to get the head of com-
pared aspect. We use the nmod:than from JIR to
extract one of the compared entities. The second
entity will also have an edge from the JJR, which
can be prepositional edge (nmod:in as in Figure
3a). Thus we use nmod edges from the predicate
JJR to determine the second compared entity. Note
all prepositional edges such as “with”, “for”, “dur-
ing” etc. are considered. Additionally, the sec-
ond compared entity will be separated by an Entity
Separator (“than” in this case) from the first com-
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nsubj _nmod:than
cop T 1T

amod

case
VA \
Arteriolar sclerosis| was significantly higher in than
(a)

advmod

nmod:in

nsubj J nmod:than
case
Etanercept is better th% in the treatment of pbOrlablb]
(b)

Figure 3: Comparative Adjective copular forms.

pared entity. Thus we further verify that the ex-
tracted compared entities are separated by an ES.

The position of the entity separator “than” is
critical for determining the second compared en-
tity as well as the first compared entity. As shown
in Figure 3b, despite the similar copular structure
to the sentence in Figure 3a, the subject of the JJR
(“better” in this case) is the compared entity rather
than the aspect. This is due to the fact that the JJR
is followed by the ES “than”. Thus ordering of
the words is an important clue when differentiat-
ing between these cases.

The second category involves sentences, where
the comparative adjective modifies a head noun
and this modified noun provides the compared as-
pect, as shown in Figures 4 and 5. Since the com-
pared aspect is modified by the JJR, we used the
amod edge to detect the aspect. In these cases,
the noun phrase containing the Scale Indicator will
be connected to a verb and typically serves as the
predicate of the comparison relation. The entity
separator in the sentence in Figure 4 is “compared
to” and we can extract one of the compared en-
tities (“intravenous morphine”) by following the
advcl:compared_to edge from the predicate verb
(“offers™).

Note that in the first example (Figure 4), the
Verb Group (“offer”) is in the active form and in
the second example (Figure 5), it is in the pas-
sive form (“was observed in”). Due to the ac-
tive/passive form difference, the aspect is in the
object position and one of the compared entities
in the subject position in the first example, while
the reverse is true for the second example. In the
dependency representation, the nsubj edge and the
nmod:in edge provide the subjects in active and
passive cases and dobj and nsubjpass provide the
possible objects. Note that in certain cases, the au-
thor might use an adjective (JJ) instead of the com-
parative form (“high” instead of “higher”). We
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treat such cases in the same way we treat the com-
parative adjective (JJR) form.

Note that the Semgrex patterns only identifies
the head words of the various components, which
are typically NPs. We follow outgoing depen-
dency edges from these head words to extract
phrases corresponding to each comparison compo-
nent. For example, in Figure 3a “sclerosis” is iden-
tified as the aspect head and we follow the edge
amod to extract the aspect phrase “Arteriolar scle-
rosis”. In Figure 5, we extract “TP expression” as
the aspect phrase and not “Higher TP expression”
as “higher” is the trigger of the comparison and
identified as the scale.

Comparative Adverb: In these sentences, the
comparison scale is indicated through comparative
adverbs (RBR) such as “more”, “less” etc.. Typi-
cally, the RBR modifies an adjective (JJ) as shown
in Figure 6, where the adjective is “effective”.
This adjective serves as the predicate of the com-
parison and dependency edges from it are used to
determine the aspect and entities. The syntactic
structure and our rules are very similar to the first
category of the Comparative Adjective case. Thus
we use the nsubj and advcl:compared_to edges
from “effective” to determine the compared enti-
ties. Note that the compared aspect in this exam-
ple is a clause headed by a VBG (“reducing MCP-
1 levels”) and thus in addition to nmod edges, we
need to consider the adverbial clause modifier (ad-
vel) edge to determine the aspect.

Verbs: Certain verbs such as “increased”, “de-
creased” as well as “improved” indicate differ-
ences and can be used as a SI. This verb serves
as the predicate of the comparison relation and
outgoing dependencies can be used to determine
the arguments of the comparison. We have ob-
served two categories based on the voice (passive
vs. active) of the Verb Group containing this verb.
The passive case is depicted in Figure 7a (“was in-
creased in”). In this case, we follow the nsubjpass
edge to determine the compared aspect. In Fig-
ure 7b, since the scale indicator “improved” is in
active voice, the direct object of the verb will in-
stead provide the aspect. Extraction and verifica-
tion of the compared entities is similar to the cases
described previously (e.g. nmod:in in Figure 7a;
dobj and advcl:compared_with in Figure 7b).

Note that a verb in past participle tense (VBN)

can be used as an adjective and modify a noun
(e.g., Increased TP expression was found in ...).
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case

[ |

compared to [intravenous morphine]

Figure 4: Comparative Adjective modifier form 1.
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(

Higher

n

nmod:in

ovarian cancers

normal ovaries

than in

Figure 5: Comparative Adjective modifier form 2.

We treat cases when the scale indicator verb is
used as a modifier of a NP like the second cate-
gory of Comparative Adjectives.

3.3.2 Equative

A sentence with Equative comparison corresponds
to cases, where the result of comparison indicates
no difference between the compared entities (as in
Figure 8). In these cases, it is very rare to find
the usual Entity Separator (ES) and instead words
such as conjuctions (“and”, “or”), *“ between” and
“among” play the role of the ES. We have ob-
served three frequently occurring types of such
Equative comparative structures.

The first category involves the structure “X as
JJ as Y, where JJ is an adjective. In these cases,
the adjective serves as the predicate of the com-
parison. Figure 8 depicts such a case, where the
adjective is “effective”. Here one of the compared
entity “botox” is the subject of the JJ “effective”.
The second compared entity “oral medication” is
preceded by the ES “as” and a nmod:as edge from
the JJ to the entity is present. The compared aspect
is typically attached to the second compared entity
through a nmod edge (nmod:for in this case). Note
that the ES “as” need not appear immediately af-
ter the JJ (e.g. “Botox is as effective for overactive
bladder as oral medication”). Due to the “CCPro-
cessed” representation of collapsing edges we can
still consider the nmod:as from “effective” to de-
termine the second compared entity. The only dif-
ference in this case is that the nmod.:for edge used
to determine the aspect is from the predicate “ef-
fective”.

The second case involves the Scale Indicator
phrase “similar to” as shown in Figure 9. Here the
subject of the adjective “similar” is the compared
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aspect. The nmod edges (nmod:in in this example)
from “similar” are used to determine the compared
entities. The entities in these cases are separated
through conjunctions. Note that the SI “similar”
can also modify the compared aspect (e.g. “Simi-
lar CA was observed in CE1 and CE2”). This case
closely resembles the second category of compar-
ative adjectives and similar rules are used.

The third category involves Scale Indicator
phrases such ‘‘no differences”, “no changes” etc.
Similar to the case of the second category com-
parative adjectives, here the SI “difference” is part
of a NP and hence is connected to a verb, which
serves as the predicate. Typically these verbs can
be “linking” verbs (‘is”, “was” etc.) in active form
or certain verbs indicating presence (“found in”,
“noted in”, “observed in”) in the passive form.
In active voice case, as shown in Figure 10, the
SI typically follows an existential such as “there”.
In these cases, the nmod:between from the pred-
icate verb ( “was” in this case) is used to deter-
mine the compared entities. Other nmod edges we
consider are nmod:among and nmod:in. The com-
pared aspect is attached to the second compared
entity though nmod edges (nmod:for in this exam-
ple). A large proportion of Equative structures do
not mention the compared entities explicitly, and
as per the definition of our task, we do not extract
the comparison components in these cases.

4 Evaluation

We evaluated our system for its effectiveness in
identifying comparative sentences and its compo-
nents on a test set of 189 comparisons from 125
abstracts annotated by a co-author, who was not
involved in the design and development of the sys-
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Figure 8: Equative Form 1.

tem. Note that the annotator also annotated an ad-
ditional 50 abstracts, which was used in the de-
velopment of the comparison patterns. Although
the work by Fiszman et al. (2007) attempts to
tackle the similar task of identifying comparison
sentences and its components, we do not directly
compare with their results. This is due to the fact
that their implementation is limited to “direct com-
parisons of the pharmacological actions of two
drugs”. We ran their system on our annotated test
data and only 8 out of the 189 comparisons were
identified by their system as their implementation
only detects comparison if the two compared en-
tities (CEs) are drugs. We also ran their system
on some artificially created sentences obtained by
replacing CEs with drugs and observed that their
system seemed limited in the coverage of compari-
son structures. In the subsequent sections, we will
describe the evaluation methodology, present the
results and provide an analysis of errors.

4.1 Experimental Setup

To evaluate our system’s performance, we have
created a test set of 125 abstracts. We selected
abstracts that usually draw conclusions by means
of comparing between two contrasting situations.
Randomized controlled trials (RCT), which com-
pare the outcome between two randomly selected
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groups, fit this definition very well. For this rea-
son, we searched for RCTs in PubMed with the
query “(Randomized Controlled Trial[Publication
Type]). This query yielded 431,226 abstracts.
However, we noticed that this set lacked abstracts
concerning gene expression studies. Thus, we ap-
pended to our initial dataset with abstracts related
to the effect of differential expression of genes on
diseases. As we target to identify comparison sen-
tences, we chose abstracts tagged as “compara-
tive study” in PubMed because they tend to con-
tain comparisons. We used the PubMed query:
“(Comparative Study [Publication Type]) AND
expression[TIAB] AND (cancer[TI] OR carci-
noma[TI])”, restricting the comparative studies to
gene expressions and cancer related studies. This
query yielded 8,479 abstracts.

From this initial set of abstracts, we randomly
selected 125 abstracts for annotation by a biomed-
ical researcher expert who did not take part in the
development of the system. 150 sentences from
the 125 abstracts were annotated as comparison
sentences and included 189 comparisons. Our
guidelines required the annotation of the four com-
ponents for each comparison: the compared as-
pect (CA), the two compared entities (CE1 and
CE2) and a word or phrase that indicates the scale
of comparison (SI). Additionally, they (the guide-
lines) required annotation at a sentence level for
sentences which had a explicit conclusion i.e. in-
dicated the scale of comparison and is not a men-
tion of a planned investigation.

4.2 Results and Discussion

Annotations of the test set of 125 abstracts yielded
189 comparisons, each containing a compared as-
pect, a scale indicator and two compared entities.
We ran our system on the test set and evaluated its
performance on correctly identifying the (1) com-
parison sentences, (2) compared aspect, (3) scale
indicator and (4) compared entities. When com-
puting true positives, we compared the head word
of the annotated components with the head words
extracted by our system. A mismatch resulted
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Table 1: Evaluation Results.

Type Precison Recall F-Score
Sentence 0.91 0.83 0.87
Comparison Aspect 0.85 0.72 0.78
Scale Indicator 0.87 0.75 0.81
Compared Entities 0.84 0.72 0.77

in both a false negative and false positive. We
computed Precision (P), Recall (R), and F-score
(F) measures for each evaluation type, results of
which are shown in Table 1.

We analyzed the errors made by our system
and majority of the errors (more than 80%) en-
countered were due to incorrect parsing of com-
plicated sentences. For example, in sentence (4),
the clause modifier edge acl to “compared” was
from “feed” instead of the aspect “palatable”. If
the clause “with significantly less consumption of
treated feed” is removed, thereby simplifying the
sentence, the parse is correct and we correctly ex-
tract the comparison.

(4) Pro-Dynam was significantly less palatable,
with significantly less consumption of treated
feed compared with either Equipalazone
Powder or Danilon Equidos

A second but rarer category of error involves
cases, where we did not consider certain Scale In-
dicators (SI) such as “superior”, “non-inferior”,
“extra” as in sentence (5). In such examples,
the parser tagged the SI as adjective (JJ) and not
a comparative adjective (JJIR) even though these
words indicate a comparison. Since our treatment
of such patterns was limited to JJR scale indica-
tors, we missed these cases. It is important to note
that our system will identify such structures if we
replace such JJ scale indicators by a JJR.
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(5) Moxifloxacin was non-inferior to ceftriax-
one/metronidazole in terms of clinical re-
sponse at test-of-cure in the PP population

The third category involved cases missed due
to missing patterns such as seen in sentences (6).
In sentence (6a), two set of patients are being
compared with respect to improvement extent,
while sentence (6b) compares the concentration
of “plasma F2-isoprostane” before and after drug
administration. These cases where a comparison
sentence was not detected due to missing patterns
were very few.

(6) a. Both paroxetine and placebo-treated pa-
tients improved to a similar extent on sel-
frated pain measures

b. Maximal plasma F2-isoprostane concen-
trations after IS + C (iron sucrose + Vvi-
tamin C) were significantly elevated from
baseline

More than 90% of the false positive cases,
where we detected a component of a comparison
incorrectly was due to parsing error. For example,
in sentence (7), the compared aspect is incorrectly
identified as “Sixty minutes” as the parser detects
it as the subject of “higher” rather than “FEV(1)%
increase”. If the phrase “Sixty minutes after” is re-
moved, the parse is correct and we correctly iden-
tify the aspect. We would like to emphasis that
most of the errors, either FN or FP, were due to
incorrect parsing of complicated sentences rather
than the incompleteness of our developed patterns.

(7) Sixty minutes after the bronchodilator inhala-
tion, the FEV(1)% increase was higher in
OXI groups than in the IB group.



5 Conclusion

We have presented a system to identify compari-
son sentences and extract their components from
literature using syntactic dependencies. The sig-
nificance of developing a system to identify com-
parisons arises from the prevalent nature of com-
parative structures in the biomedical literature.
We have observed that in a sample of abstracts
describing randomized controlled trials or com-
parative studies, almost every abstract contained
at least one comparison. Moreover, other text-
mining applications might rely on extracting the
arguments of a comparison. For example, this
approach could be applied to mining reports of
differential expression experiments, which are in-
herently comparisons. In (Yang et al., 2010), the
authors defined seven comparative classes of dif-
ferential expression analyses relevant to the pro-
cesses of neoplastic transformation and progres-
sion, including cancer vs. normal tissue, high
grade vs. low grade samples, and metastasis vs.
primary cancer. Because comparative statements
are often used to summarize the results of a study,
these sentences are often of high interest to the
reader. To the best of our knowledge, ours is the
only work that attempts to cover a wide range of
comparisons, capture all comparison components,
and does not impose any restrictions on the type of
compared entities. Our system achieved F-scores
of 0.87, 0.78, 0.81 and 0.77 for identifying com-
parison sentences, aspects, scale and entities re-
spectively. We plan to extend this work to consider
situations, where one of the entities is implied and
needs to be extracted from context.
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Abstract

In this paper we present a solution for tag-
ging funding bodies and grants in scien-
tific articles using a combination of trained
sequential learning models, namely con-
ditional random fields (CRF), hidden
markov models (HMM) and maximum en-
tropy models (MaxEnt), on a benchmark
set created in-house. We apply the trained
models to address the BioASQ challenge
5c, which is a newly introduced task that
aims to solve the problem of funding infor-
mation extraction from scientific articles.
Results in the dry-run data set of BioASQ
task Sc show that the suggested approach
can achieve a micro-recall of more than
85% in tagging both funding bodies and
grants.

Introduction and Description of the
BioASQ Task Sc

The scientific research and development market is
a $136bn industry in the US alone, with a 5-year
growth of 2.3%, as recorded in 2017'. Within
this economy, organizations which fund research
need to ensure that they are awarding funds to the
right research teams and topics so that they can
maximize the impact of the associated available
funds. As a result, institutions and researchers are
required to report on funded research outcomes,
and acknowledge the funding source and grants.
In parallel, funding bodies should be in a posi-
tion to trace back these acknowledgements and
justify the impact and results of their research al-
located funds to their stakeholders and the tax-
payers alike. Researchers should also be able to
have access to such information, which can help

"https://www.ibisworld.com/industry/
default.aspx?indid=1430
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them make better educated decisions during their
careers, and help them discover appropriate fund-
ing opportunities for their scientific interests, ex-
perience and profile. This situation creates unique
opportunities for the affiliated industry, to coordi-
nate and develop low-cost, or cost-free, solutions
that can serve funding agencies and researchers. A
fundamental problem that needs to be addressed
is, however, the ability to automatically extract the
funding information from scientific articles, which
can in turn become searchable in bibliographic
databases.

In this work we address this problem of au-
tomating the extraction of funding information
from text, using machine learning techniques. We
evaluate and combine several state-of-the-art se-
quential learning approaches, to accept a scientific
article as a raw text input and provide the detected
funding agencies and associated grant IDs as out-
put.

In order to test our approach, we have partici-
pated in the BioASQ challenge 5c?, which is a part
of the larger BioASQ challenge. BioASQ organizes
challenges which include tasks relevant to hier-
archical text classification, machine learning, in-
formation retrieval, QA from texts and structured
data, multi-document summarization and many
other areas (Tsatsaronis et al., 2015). In this par-
ticular task (challenge 5c), the participants are
asked to extract grant and funding agency informa-
tion from full text documents available in PubMed
Central®. Annotations from PubMed are used to
evaluate the information extraction performance
of participating systems, with the evaluation cri-
terion being micro-recall. Furthermore, the agen-
cies to be reported must be in a predetermined list
as provided by the National Library of Medicine

http://participants—area.bioasq.org/
general_information/Task5c/
‘https://www.ncbi.nlm.nih.gov/pmc/
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(NLM)*.
2 Background Literature

2.1 Named Entity Recognition

Named entity recognition (NER) locates units of
information, such as names of organizations, per-
sons and locations and numeric expressions, from
unstructured text. Each such unit of information
is then known as a named entity. In the context of
this paper, the named entities that are identified are
either Funding Agencies (FA) or Grant IDs (GR).
As an example, given a text of the form: “This
work was supported by the Funding Organization
with grant No. 12347, the NER task is to label
“Funding Organization” in text as FA and “1234”
as GR. In principle, effective NER systems usu-
ally employ rule-based (Farmakiotou et al., 2000;
Cucerzan and Yarowsky, 1999; Chiticariu et al.,
2010), gazetteer (Ritter et al., 2011; Torisawa,
2007) and machine learning approaches (Chieu,
2002; McCallum and Li, 2003; Florian et al.,
2003; Zhou and Su, 2002). In this work we utilize
several sequential learning (Dietterich, 2002) ma-
chine learning approaches for NER, which are dis-
cussed next. A detailed survey of NER techniques
for further reading may be found in the work of
Nadeau et al. (2007).

2.1.1 Sequential Learning Approaches

Sequential learning approaches model the rela-
tionships between nearby data points and their
class labels, and can be classified into genera-
tive or discriminative. In the context of NER,
Hidden Markov Models (HMMs) are generative
models that learn the joint distribution between
words and their labels (Bikel et al., 1999; Zhou
and Su, 2002). A HMM is a Markov chain with
hidden states, and in NER the observed states
are words while the hidden states are their la-
bels. Given labelled sentences as training exam-
ples, NER HMMs find the maximum likelihood
estimate of the parameters of the joint distribu-
tion, a problem for which many algorithmic so-
lutions are known (Rabiner, 1990). Conditional
Random Fields (CRFs) are discriminative, in con-
trast to HMMSs, and find the most likely sequence
of labels or entities given a sequence of words.
The relationship between the labels is modelled by
a Markov Random Field. Linear chain CRFs are

‘nttps://www.nlm.nih.gov/bsd/grant_
acronym.html
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well suited to sequence analysis and have been ap-
plied succssfully in the past in parts-of-speech tag-
ging (Lafferty et al., 2001), shallow parsing (Sha
and Pereira, 2003) and NER (McCallum and Li,
2003). Finally, another way of modelling data
for NER is Maximum Entropy (MaxEnt) models,
which select the probability distribution that max-
imizes entropy, thereby making as little assump-
tions about the data as possible. Following the
seminal work of Berger et al. (1996), maximum
entropy estimation has been successfully applied
to NER in many works (Chieu, 2002; Bender et al.,
2003). Essentially, CRFs are also maximum en-
tropy models working over the entire sequence,
whereas MaxEnt models make decisions for each
state independently of the other states.

2.1.2 State-of-the-art Open-source Toolkits

Several open-source toolkits implement one or
more of the learning approaches mentioned in the
previous section. This section discusses three of
them in particular, which have been found to be ef-
ficient, scalable and robust in practice, and which
are used as base approaches in the current work.

The Stanford CoreNLP toolkit® is a JVM-based
text annotation framework whose NER implemen-
tation is based on enhanced CRFs with long-
distance features to capture more of the structure
in text (Finkel et al., 2005). An important feature
of the toolkit is the ability to use distributional
similarity measures, which assume that similar
words appear in similar contexts (Curran, 2003).
The toolkit is released with a well-engineered fea-
ture extractor, as well as pre-trained models for
recognizing persons, locations and organizations.

LingPipe® is another Java-based NLP toolkit,
whose efficient HMM implementation includes n-
gram features. The toolkit has been successfully
applied in the past in gene recognition in text (Car-
penter, 2007).

Finally, in this work we also use the Apache
OpenNLP” toolkit, which implements NER either
by using discriminative trained HMMs (Collins,
2002), or by training MaxEnt models (Ratna-
parkhi, 1998).

Shttp://stanfordnlp.github.io/CoreNLP/

*http://alias-i.com/lingpipe/demos/
tutorial/read-me.html

7https://opennlp.apache.org/



2.2 Related Work

To the best of our knowledge, this is the first piece
of research work that systematically explores the
concept of extracting funding information from
the full text of scientific articles. The next clos-
est category of related published research works
mostly aims at extracting names of organizations
from affiliation strings, e.g., the works of Jonnala-
gadda et al. (2010), and Yu et al. (2007), both
of which aim at extracting names of organizations
from the metadata of published scientific articles.
There are, however, several initiatives that started
recently and are aiming at a similar direction to the
current work, such as the ERC project “Extracting
funding statements from full text research articles

in the life sciences™®.

3 Methodology

3.1 Overview

The suggested approach receives as input a text
chunk, e.g., the raw full text of a scientific arti-
cle, and annotates the input text with entities cor-
responding to Funding Agencies (FAs) and Grant
IDs (GRs), where present. A two-step search strat-
egy for finding FA and GR entities in text has been
implemented. The process starts by splitting the
input text into paragraphs, which are in turn given
sequentially as input to a binary text classifier that
identifies only those paragraphs which may con-
tain any funding information. NER is performed
next, only on the said filtered text paragraphs, to
annotate them with FA and GR labels. This design
enjoys several benefits; primarily it minimizes the
execution time of the approach, as the most costly
component, which is the NER part, is only exe-
cuted in a small selection of paragraphs in which
the binary text classifier has detected evidence of
funding information. In parallel, it reduces signif-
icantly the false positives of the approach, as there
are many text segments in a scientific full text ar-
ticle that contain strings which a NER component
could potentially annotate falsely as FA, e.g., the
organisation names in the affiliation information
of the authors.

3.2 Training Data Gathering

For this task, we have created a “Gold” set for
training, i.e., a manually curated and annotated set
of scientific articles with FA and GR labels. Such

$http://cordis.europa.eu/result/rcn/
186297_en.html
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a gold set was created, even though BioASQ task
Sc provides a training set, as several discrepancies
were observed in the said training set, the most
important being the absence of entity offsets. The
“gold” set was created with journal articles from
a large number of scientific publishers, and com-
prises 1,950 articles annotated by three profes-
sional annotators, who were provided with com-
prehensive guidelines explaining the process and
the entities. A harmonization process then merged
the annotations of the three experts; when all three
agreed, annotations were automatically harmo-
nized, whilst the disagreements between the an-
notators were resolved manually by a subject mat-
ter expert (SME). From the 1, 950 articles, 1,682
contained at least one funding-related annotation.
As for the individual entities, a total of 3,428 FA
and 2,592 GR annotations exist in the set. Pair-
wise averaged Cohen’s kappa (Cohen, 1960) was
used to calculate the inter-annotators agreement,
which for this set was measured at 0.89, suggest-
ing a high-quality dataset. The “gold” set was used
for two purposes: (i) to train the binary text classi-
fier that detects the paragraphs of text which con-
tain funding information; the number of positive
samples were found to be 1, 682, while the num-
ber of negative samples had a much higher value
at 47, 565, constituting a highly imbalanced set for
the task, and, (ii) to train the NER components that
detect FA and GR entities.

3.3 Detecting Text with Funding Information

The first step is to separate the parts of the text
which contain funding information from the parts
which do not. To address this problem, we have
used Support Vector Machines (SVMs), which are
known to perform favourably on text classification
problems (Joachims, 1998). More precisely, an
L2 regularized linear SVM has been used, oper-
ating on TF-IDF vectors extracted from the seg-
ments of each input text, based on a bigram bag-
of-words representation. The SVM was trained on
the examples of positive and negative segments,
i.e., paragraphs with and without funding infor-
mation, which could be found in the “gold” set
described in the previous section. The regular-
ization parameter for the SVM was found to be
C = 2 based on cross-validation experiments to
maximize the final recall.



3.4 Training and Using Sequential Learning
Models

As described in section 2.1.1 and 2.1.2, we have
employed a variety of complementary techniques
to best extract the described entities from text. All
of the individual models, namely, a CRF imple-
mentation from the Stanford CoreNLP, a LingPipe
based enhanced HMM, and an OpenNLP imple-
mentation of the MaxEnt tagger, were trained on
the said “gold” set using the default hyperparame-
ter settings, as provided by their respective imple-
mentations.

Additionally, word clusters were provided to the
Stanford CoreNLP toolkit, which has the ability
to utilize distributional similarity features. The
clustering was performed by first extracting word-
embedding vectors from the “gold” set, using the
unsupervised Word2Vec algorithm by Mikolov et
al. (2013), followed by performing k-means clus-
tering to create the clusters, based on the cosine-
similarity of the word vectors.

For the specific purpose of BioASQ challenge
5c, keeping in mind that it is evaluated on micro-
recall, the unique outputs of the various models
were pooled in, to create the final list of named
entities to be provided as output.

3.5 Task Specific Post-processing Detected
Entities

In order to perform well on BioASQ 5c, some ad-
ditional post-processing steps were performed.

Extraction of Funding Agency from Grant ID
Usually grant IDs contain an acronym from which
the corresponding funding agencies can be in-
ferred. As an example, a fictitious grant of the
form “MRCI123A” would contain the acronym
“MRC”, signifying that it has been sanctioned by
the “Medical Research Council”. For task 5c of
BioASQ, NLM provides a dictionary of acronyms
mapped to the respective agency’, which has been
used to retrieve funding agencies from the detected
grant IDs.

Corrections to Grants In some cases the prefix
of grant numbers was incorrectly published with a
letter O’ rather than the numeric ’0’. For exam-
ple, RO1/A145338-04 instead of RO1/A145338-04.
As NLM has corrected these in their annotations,
so did we in a post-processing step.

‘https://www.nlm.nih.gov/bsd/grant_
acronym.html

Method || FA uR | GR R

HMM 80.4 82.3
MaxEnt 81.1 83.9
CRF-distsim 83.3 86.1
Pooled 85.2 86.2

Table 1: Percentage Micro-recall results for the
identification of Funding Agencies (FA) and Grant
IDs (GR) from the dry-run dataset of BioASQ task
Sc.

4 Results

As the aforementioned models are trained on a en-
tirely different manually curated “gold” set, evalu-
ations could be made in one pass on the entire dry-
run data set of BioASQ task 5c, which consisted of
15, 205 documents from PubMed.

Table 1 presents the micro-recall results of the
trained models being evaluated on the dry-run
dataset. The models listed as HMM and Max-
Ent are self-explanatory, while CRF-distsim is
the Stanford CoreNLP toolkit based CRF model
which also utilizes distributional similarities, as
described in section 3.4. Pooling represents the
meta-model created by pooling in all the outputs
from the individual models. In each case, the out-
puts undergo the same post-processing step, as de-
scribed in the previous section.

The table shows that the CRF model performs
extremely well and is complemented by the other
models, all of which better the micro-recall of the
pooled meta-model, which performs 1.9 percent-
age points better than the CRF in detecting FA en-
tities, while performing comparably for GR anno-
tations.

5 Conclusions

In this paper we have tackled the problem of fund-
ing information extraction from scientific articles,
in the context of the BioASQ challenge 5c. We
have tested and combined state-of-the-art sequen-
tial learning models, along with creating a bench-
mark dataset for training. The results on the dry-
run dataset of the challenge indicate the good per-
formance of Conditional Random Fields as well as
the complementary performance of the other mod-
els, whose combination is evaluated at an overall
best micro-recall of 85.2% for Funding Agencies
and 86.2% for Grant IDs.
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Abstract

We describe a Deep Learning approach to
modeling the relevance of a document’s
text to a query, applied to biomedical lit-
erature. Instead of mapping each docu-
ment and query to a common semantic
space, we compute a variable-length dif-
ference vector between the query and doc-
ument which is then passed through a deep
convolution stage followed by a deep re-
gression network to produce the estimated
probability of the document’s relevance
to the query. Despite the small amount
of training data, this approach produces a
more robust predictor than computing sim-
ilarities between semantic vector represen-
tations of the query and document, and
also results in significant improvements
over traditional IR text factors. In the fu-
ture, we plan to explore its application in
improving PubMed search.

1 Introduction

The goal of this research was to explore Deep
Learning models for learning textual relevance of
documents to simple keyword-style queries, as ap-
plied to biomedical literature. We wanted to ad-
dress two main research questions: (1) Without
using a curated thesaurus of synonyms and related
terms, or an industry ontology like Medical Sub-
ject Headings (MeSH®) (Lu et al., 2009), can a
neural network relevance model go beyond mea-
suring the presence of query words in a document,
and capture some of the semantics in the rest of
the document text? (2) Can a deep learning model
demonstrate robust performance despite training
on a relatively small amount of labelled data?

We had access to a month of click logs from

PubMed®!, a biomedical literature search engine
serving about 3 million queries a day, 20 re-
sults per page (Dogan et al., 2009). Most cur-
rent users of the system are domain experts look-
ing for the most recent papers by an author or
search with complex topical boolean query expres-
sions on document aspects. For a small proportion
(~ 5%) of the searches in PubMed, the retrieved
articles are sorte by relevance, instead of the de-
fault sort order by date. Usage analysis has shown
(ibid.) that topic-based queries are a significant
part of the search traffic. Such queries often com-
bine two or more entities (e.g. gene and disease),
and while users still use short queries, the users
are persistent and will frequently reformulate their
queries to narrow the search results. So improv-
ing the ranking is important to satisfy the needs of
PubMed’s expanding user base.

Traditional lexical Information Retrieval (IR)
factors measure the prominence of query terms
in documents treated as bags of words. While
such factors like Okapi BM25 (Robertson et al.,
1994) and Query Likelihood (Miller et al., 1999)
are quite effective, there are several cases where
they fail. Two that we wanted to target were: (i)
under-specified query problem, where even irrel-
evant documents have prominent presence of the
query terms, and relevance requires analysis of the
topics and semantics not directly specified in the
query, and (ii) the term mismatch problem (Furnas
et al., 1987), which requires detection of related
alternative terms or phrases in the document when
the actual query terms are not in the document.

2 Background

Deep Learning models have been applied to vari-
ous types of text matching problems. Their com-
mon goal is to go beyond the lexical bag-of-words

"http://ncbi.nlm.nih.gov/pubmed
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treatment and model text matching as a complex
function in a continuous space. An overview of
neural retrieval models can be found in (Zhang
et al., 2016; Mitra and Craswell, 2017). We review
some of this work that motivated our research.

Most text Deep Learning models start with a nu-
meric vector representation of text’s lexical units,
most commonly terms or words. Ideally these vec-
tors are trained as part of the model, however when
training data is limited, many researchers pre-
train these word-vectors in an unsupervised man-
ner on a large text corpus, often using one of the
word2vec models (Mikolov et al., 2013a,b). We
used the SkipGram Hierarchical Softmax method
to pre-train our word-vectors on Titles and Ab-
stracts from all documents in PubMed.

Word Mover’s Distance (WMD) (Kusner et al.,
2015) is an (untrained) model for determining the
semantic similarity between two texts by comput-
ing the pairwise distances between the words’ vec-
tors. It leverages the similarity of vectors of se-
mantically related words. When applied to ad hoc
IR, it often successfully tackles the term mismatch
problem. We compare our model’s performance
against WMD, and show that the added complex-
ity produces further improvements in ranking.

Many deep learning text similarity and IR mod-
els first project the query and each document to
vectors to a common latent semantic space. A
second stage then determines the ‘match’ between
the query and document vectors. In the rele-
vance model described in (Huang et al., 2013) the
last stage is the cosine similarity function, and
in follow-up work (Shen et al., 2014) the authors
use a convolutional layer as part of the semantic
mapping network, and a feed-forward classifica-
tion network is trained to compute the similarity.
Instead of training word embeddings, their docu-
ment presentation is based on representing each
word as a bag of letter tri-grams. Their model
is trained on about 30 million labelled query-
document pairs extracted from the click logs of a
web search engine. The convolution layer is used
to capture a word’s context and word n-grams. A
similar approach is taken in (Gao et al., 2014). The
ARC-I semantic similarity model of (Hu et al.,
2014) uses a stack of interleaving convolution and
max-pooling layers to map a sentence to a se-
mantic vector. They argue that stacking convolu-
tions of width 3 or more allows them to capture
richer compositional semantics than the recurrent
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(Mikolov et al., 2010) or recursive (Socher et al.,
2011a,b) approaches. However convolutional ar-
chitectures do have fixed depths that bound the
level of composition. Our use of a vertical stack
of convolutional layers without interleaving pool-
ing layers is similar to the successful image recog-
nition models AlexNet (Krizhevsky et al., 2012)
and VGGNet (Simonyan and Zisserman, 2015).

Severyn & Moschitti’s (2015) model to rank
short text pairs is trained on small data (~ 50k —
100k samples). Word embeddings are pretrained
using word2vec, a convolutional network maps
documents to a semantic vector, followed by a dif-
ference matrix and a 3-layer classification network
to compute the similarity between the input texts.
This is much closer to our final approach, and we
compare the performance of our relevance model
against this model, but using word-embeddings of
size 300 rather than 50 to try to capture richer se-
mantics in biomedical literature.

Another approach to text matching first devel-
ops ‘local interactions’ by comparing all possible
combinations of words and word sequences be-
tween the two texts. Examples are described in
(Hu et al., 2014; Lu and Li, 2013). A recent IR
model based on this approach is described in (Guo
et al., 2016). Authors argue that the local inter-
action based approach is better at capturing de-
tail, especially exact query term matches. Our ap-
proach simplifies the local-interactions by pairing
each document word with a single query word, fol-
lowed by deep convolutions to attempt to capture
some related compositional semantics.

3 The Data
3.1 The Input

We extracted query-document pairs from one
month of PubMed click logs where users selected
‘Best Match’ (relevance) as the retrieval sort order.
For each search resulting in a click, the first page
of up to 20 documents was recorded. If the clicked
document was not on the first page, it was added to
this list. The first click on a PubMed search result
takes you to a document summary page. Further
clicks to the full text of the document were also
recorded. Documents that received clicks were la-
belled as relevant. This binary notion of relevance
was used to train our models, and for model eval-
uation using precision-based ranking metrics. We
also experimented with relevance levels, based on
a formula hand-tuned to match human-perceived



relevance (see appendix). We report NDCG met-
rics using these relevance levels.

The queries were restricted to simple text
searches, of up to seven words, thus eliminating
boolean expressions, author searches and queries
mentioning document fields. Log extracts were
further restricted to queries with at least 21 doc-
uments, and at least 3 clicked documents. These
filters reduced the the logs to about 33,500 queries.

These queries were randomly split to 60% train-
ing, and 20% each for validation and testing. The
number of documents available for each query was
quite skewed. Since the metrics we use (described
below) give equal weight to each query, we further
sub-sampled the training and validation datasets to
pick at most 20 of the most relevant documents
and an equal number of non-relevant documents.
This helped balance out the significance of the
queries without reducing the data size too much,
and improved the mean per-query metrics of the
trained models. The resulting training dataset con-
sisted of 634,790 samples (query-document pairs).

3.2 Pre-processing the Input

We used each document’s Title and Abstract to
form its text. After some experimentation and
evaluation on the validation dataset, we found that
limiting this to the first 50 words was optimal.
Documents shorter than that were padded with 0’s,
as were queries shorter than 7 words.

We used a simple tokenizer that split words on
space and punctuation, while preserving abbrevi-
ations and numeric forms, followed by a conver-
sion to lower-case. All punctuation was dropped,
which also resulted in a loss of sentence and some
grammatical structure, an area to be explored in
the future. Numeric forms were collapsed into
7 classes: Integer, Fraction in (0, 1), Real num-
ber, year “19xx”, year “20xx”, Percentage (num-
ber followed by “%”), and dollar amount (num-
ber preceded by “$”). Removing stop-words from
the query and documents did not improve perfor-
mance of the models.

We leveraged the large PubMed corpus of about
26 million documents to pre-train the word vec-
tors, using the SkipGram Hierarchical Softmax
method of word2vec (Mikolov et al., 2013b),
with a window size of +£5, a minimum term-
frequency of 101, and a word-vector size of 300.
This resulted in a vocabulary of 207,716 words.
Rare words were replaced with the generic “UNK”
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Figure 1: The Delta Relevance Classifier.
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token, which was initialized to ~ U[—0.25, 0.25],
as in (Severyn and Moschitti, 2015).

4 The Delta Relevance Classifier Model

The components of the Delta Relevance Classifier
(figure 1) are described below. Optimal sizes of
the various layers were determined by tuning for
best accuracy on validation data.

4.1 Note on Convolutional Layers

A convolutional operation (LeCun, 1989) is a se-
ries of identical transformations on subsequences
of the input obtained by a sliding window on the
input. The resultis called a feature map, and a con-
volutional layer will usually involve several fea-
ture maps. The width of the input subsequence is
called the filter width.

In our application, the input is a sequence of
words, each word represented by a real vector of
size d. A convolution of filter-width k£ processes
word k-grams. The value of the ¢-th element of
the j-th feature map ¢’ is computed as follows:

cly = o((xx W)y + b))

x % W/ =X poy 1 - WY
d m
=3 (@ie ki Kij)
i=1 j=1

Here o is the non-linear activation function, W/ &
RI*k, b; € R are the parameters of the j-th feature
map, and the input is x € R¥™. In the models
in this paper, the feature maps are applied in full
mode, which effectively pads the input on either
side with £ — 1 d-sized 0-vectors, so x; ; = 0 for
j <lorj > m,andtranges from 1 tom+k—1.

Applied to text, a convolutional layer of width 3
will extract features from 3-grams. A second con-



Full Test Data Neg20+ OneNewWord AllNewWords
Nbr. of Queries 6,797 2,600 1,823 1,002
Nbr. of Samples 416,509 208,734 90,353 50,827
Prop. of Samples +ive 45.2% 39.5% 48.9% 48.8%
Prop. of Samples -ive 54.8% 60.5% 51.1% 51.2%
+ives without all Query terms in Title 38.9% 13.9% 34.0% 25.2%
-ives with all Query terms in Title 59.1% 83.6% 65.4% 73.4%

Table 1: Test Data and its subsets

volutional layer of the same width stacked above
then extracts features from 5-grams, and so on.

4.2 Query-Document Overlap Features

Following (Severyn and Moschitti, 2015), we
compute some overlap features to aid relevance
detection when dealing with exact matches, and
rare words collpased to the ‘UNK’ token. We
use the following overlap features, the first two of
which are taken directly from that paper: (i) pro-
portion of query and document words in common,
(i1) IDF-weighted version of (i), (iii) proportion of
query words in the document, and (iv) proportion
of query bigrams in the document.

4.3 Difference Features Stage

Instead of developing all pairwise local interac-
tions between query and document terms, we cap-
ture interactions between pairs of closest terms.
This simplifies the model, and since queries are
short, we are unlikely to loose any useful inter-
actions. The difference features are computed in
two steps (algorithm 1). First, for each word in
the document of a query-document pair, the clos-
est query word in absolute vector distance is iden-
tified (skipping all “UNK” words in the query and
document). We then output the difference vector,
along with its length and the cosine angle between
the two vectors. With word-vectors of size d and a
document of T" words, the output of this stage is a
real matrix of size d x (T + 2). We found T' = 50
produced the best results for the Delta models.

Algorithm 1 Query-Doc Difference Features

Input: Query text Q and Document text D.

for each word vector w in D s.t. w # UNK do:
Find wy = argmin(u € Q, u # UNK) |Jw — u|
OUtPUt: (w - wQ)v ||’LU - wQH7 cos(w, w‘Z)

end for

4.4 Delta Scanner Stage

The Delta Scanner stage is a vertical stack of
three Convolutional layers of 256 filters each, fol-
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lowed by a Dropout layer, and then a Global Max-
Pooling layer outputting a fixed-width vector. All
feature maps use the ReLU (Rectified Linear Unit)
activation function.

The input to the Delta Scanner stage is the
d x (T + 2) matrix produced by the Difference
Features stage. Documents whose text is fewer
than 7" words are right-padded with 0’s, and the
Delta Scanner supports a mask input that it uses to
ignore the padding. The output of this stage is a
vector of size 256, representing the semantic dif-
ference between the the query and the document
in a query-document pair. The remaining hyper-
parameters are: Dropout probability, and the L.2-
regularization coefficient.

4.5 Relevance Classifier Stage

This is a deep fully connected feed-forward lo-
gistic regression stage. The input to the Rele-
vance Classifier stage is the combined vectors out-
put from the Overlap Features and Delta Scanner
stages, with a total width of 260 = (4+256). This
data is fed through the following layers:
i. a Dropout layer,
ii. two feed-forward layers, each of width 260,
using the ReLU activation function,
iii. another Dropout layer, and
iv. a sigmoid-based Classification layer.
The Relevance Classifier’s output is an estimate of
the probability of the input document’s relevance
to the query. Documents are ranked in reverse or-
der on this estimated probability.
This stage’s hyper-parameters are: Dropout
probability (same value used for both Dropout lay-
ers), and the L.2-regularization coefficient.

4.6 Loss Function and Sample Weighting

The data labels capture a binary sense of rele-
vance, and our models are binary classifiers, so we
used the standard binary cross-entropy loss.

In the default mode, the neural network models
were trained without any weighting of the training



samples. We trained a second set of models with
sample weights derived from the non-binary rele-
vance levels (described above). For each relevance
level r, a weight of max[1,log(1 + r)] was used.
This damped the relevance levels, while ensuring
that each relevant document received at least the
same weight as a non-relevant document.

4.7 Optimization and Implementation Notes

All the neural network models were optimized us-
ing Adadelta (Zeiler, 2012), with mini-batches of
256 samples. Mini-batch gradient descent was run
for 10 epochs, and the trained values at the end
of the epoch producing the best classification ac-
curacy on the Validation dataset were chosen. A
greedy search was done in the grid space of the
hyper-parameters for the Delta Scanner and Rel-
evance Classifier stages, and the values that pro-
duced the best validation accuracy were selected.

S Experimental Setup

We compare the performance of the relevance
models on the following ranking metrics: NDCG
at rank 20, Precision at ranks 5, 10 and 20, and
Mean Average Precision (MAP). Scoring ties were
resolved by sorting on decreasing document-id.

5.1 Methods Compared

We compared the performance of our deep
learning model against: BM25; the Unigram
Query Likelihood Model (UQLM) with Dirich-
let Smoothing (Zhai and Lafferty, 2004); Word
Mover’s Distance (WMD) that leverages pre-
trained word-vectors; and a couple of neural net-
work models based on the architecture described
in (Severyn and Moschitti, 2015).

We tested BM25 on the document Title, Ab-
stract and Title + Abstract, and found BM25 on
Title to give the best ranking performance, with
parameters k; = 2.0,b = 0.75. Similarly, UQLM
applied to the document Title and WMD applied
to the document Title after removal of stop-words
performed better than the other alternatives.

5.1.1 Severyn-Moschitti Model

We tested four variants of the relevance classi-
fier described in (Severyn and Moschitti, 2015).
All versions used the same input data and word-
vectors as used for the Delta model. In the ba-
sic version, which we will refer to as “SevMos-
C1”, the query and document were fed into a
single-layer Convolutional stage as described in
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section 4.1, with 256 feature maps and a filter
width of 5. This was followed by a Dropout layer
and then Global Max-Pooling. The outputs of the
query and document convolutions, along with the
overlap features described in section 4.2, were fed
into a Classifier stage. This stage computed a dif-
ference between the query and document features
using a difference matrix, and this value along
with the other inputs were fed into a deep clas-
sification stage identical to that used in the Delta
model (section 4.5), sized to match these inputs.

In the “SevMos-C3” variant of this model, we
replaced the single-layer convolution stage with a
deeper 3-layer stack of convolutions of filter width
3, followed by global max-pooling, just like the
Delta model’s ‘Delta Scanner’ stage.

In addition to training the models on un-
weighted samples, we also trained separate mod-
els on relevance-based weighted samples (see sec-
tion 4.6), which we refer to below as “SevMos-
C1 w” and “SevMos-C3 w”.

Optimal values for the L2-regularization and
Dropout probability hyper-parameters were deter-
mined by doing a greedy grid search, as described
for the Delta model.

5.2 The Test Data

The test data used to compare performance of the
different textual relevance approaches is the held-
out 20% split of the data extracted from search
logs, as described in section 3.1, without any fur-
ther sub-sampling. Of the relevant documents
(“+ives”), 38.9% did not contain all query terms
in the title. Similarly among the non-relevant doc-
uments (“-ives”), 59.1% contained all the query
terms in the title (see table 1).

In addition to comparing ranking metrics of
the different approaches on the test data, we
also wanted to explore the main research ques-
tions motivating this work: (i) the problems of
under-specified queries and term mismatch, and
(ii) model robustness. To help answer these ques-
tions, we also compare ranking metrics on the fol-
lowing subsets of the test data:

Neg20+: This consists of all queries for which
there were at least 20 non-relevant documents
that contained all the query words in the title.
This helps evaluate performance on under-
specified queries.

OneNewWord: The 1,823 test queries which



NDCG.20 MAP  Prec.5 Prec.10 Prec.20
rev DocID 0.164 0.456 0.344 0.376 0.406
BM25-Title 0.353 0.568 0.592 0.550 0.502
UQLM-Title 0.341 0.561 0.575 0.541 0.500
WMD-Title 0.356 0.579 0.602 0.565 0.516
SevMos-C1 0.345 0.581 0.599 0.569 0.528
SevMos-C3 0.339 0.577 0.597 0.564 0.524
Delta 0.375 0.597 0.627 0.586 0.539
Delta — WMD +5.3% +3.1% +42% +3.7% +4.5%
Delta — SevMos-C1 +8.7% +2.8% +4.7% +3.0% +2.1%

Table 2: Ranking metrics on the Full Test Data

contain at least one new word that did not oc-
cur in any training or validation queries.

AllNewWords: A smaller subset of queries all of
whose words are new: none of the training or
validation queries included these words.

The last two subsets will help us evaluate model
robustness. The statistics of the test data and its
subsets are summarized in table 1.

6 Main Results and Discussion

6.1 Models trained on Un-weighted Samples

Table 2 compares the performance of all the above
ranking factors and models on the full test data.
The first row shows the metrics obtained by rank-
ing all the documents on reverse order of Docu-
ment ID. We use this as a score tie-breaker for all
the other rankers, so it provides a useful baseline
performance of an uninformed ranker.

As also seen in (Shen et al., 2014), BM25 on Ti-
tle slightly outperforms the Unigram Query Like-
lihood Model. We have seen other cases where
UQLM outperforms BM25. We believe the better
performance of BM25 here is partly due to it be-
ing a strong factor in the relevance ranking from
which these click logs were extracted, thus bias-
ing the click data to some extent.

Word Mover’s Distance (WMD-Title) is the first
factor in the table that takes non-query words into
account, and it does show an improvement over
BM25. However WMD relies on the word-vectors
obtained by unsupervised training, using a simple
Euclidean distance on these vectors as the seman-
tic distance between words. This, and its relatively
simple computation, limit how well it performs.

The SevMos-C1 model applies a complex non-
linear transformation on the word-vector based
text space, in an attempt to better capture compara-
ble semantics of documents. However its NDCG
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numbers are worse than both WMD and BM25,
although its precision numbers, while better than
BM25, are about the same as those for WMD.
Given that the neural network models in this ta-
ble were trained on a boolean version of relevance,
we expect the main gains to be in the precision-
based metrics, which also use a boolean notion of
relevance. The lack of improvement in precision
metrics over WMD shows that SevMos-C1’s non-
linear transformations are not doing a better job of
capturing query and document semantics.

The SevMos-C3 model learns a more complex
non-linear transformation than SevMos-C1, by us-
ing a stack of three non-linear convolution layers
instead of one in the first part of the model. How-
ever its metrics are no better (actually somewhat
worse) than SevMos-C1 across the board. So in-
creasing the expressive power of the model did not
help. Lack of sufficient training data might be lim-
iting the performance of these models.

The main difference between the Delta model
and SevMos-C3 is that the Delta Model starts by
computing a difference vector between the Doc-
ument and Query’s word-vector representations.
This local interaction vector is inspired by Word
Mover’s Distance, and in the Delta model we hope
to combine the benefits of the WMD and Sev-
Mos approaches, while at the same time reduc-
ing the complexity of the input space, and thus al-
lowing us to extract more benefit from the small
amount of training data. The performance metrics
for the Delta model do indeed show sizeable im-
provements over both WMD and SevMos-C1 (and
thus also over BM25 and UQLM). The relative im-
provements in the metrics are shown in the last two
rows of the table?.

The ‘Neg20+ section of the table 3 compares

2All cited improvements have been verified to be statis-
tically significant to at least a 99% confidence level using a
paired t-test.



NDCG.20 MAP Prec.5 Prec.10 Prec.20
Subset: Neg20+
rev DocID 0.098 0.413 0.310 0.335 0.365
BM25-Title 0.252 0.474 0.490 0.461 0.431
UQLM-Title 0.235 0.466 0.473 0.454 0.428
WMD-Title 0.263 0.483 0.501 0.472 0.441
SevMos-Cl1 0.277 0.499 0.518 0.492 0.462
SevMos-C3 0.272 0.496 0.519 0.490 0.459
Delta 0.296 0.509 0.539 0.507 0.473
Delta — WMD +12.5% +5.4% +7.6% +7.4%  +7.3%
Delta — SevMos-C1 +6.9% +2.0% +4.1% +3.0% +2.4%
Subset: OneNewWord
rev DocID 0.224 0.490 0.366 0.409 0.443
BM25-Title 0.373 0.595 0.606 0.567 0.520
UQLM-Title 0.368 0.595 0.601 0.567 0.526
WMD-Title 0.362 0.600 0.606 0.578 0.531
SevMos-Cl1 0.363 0.609 0.614 0.588 0.549
SevMos-C3 0.354 0.603 0.613 0.583 0.547
Delta 0.402 0.625 0.644 0.606 0.559
Delta — WMD +11.0% +4.2% +6.3% +4.8%  +5.3%
Delta — SevMos-C1 +10.7% +2.6% +4.9% +3.1% +1.8%
Subset: AlINewWords
rev DocID 0.230 0.509 0.392 0.439 0.466
BM25-Title 0.352 0.585 0.594 0.564 0.519
UQLM-Title 0.348 0.588 0.593 0.566 0.527
WMD-Title 0.333 0.584 0.582 0.567 0.530
SevMos-Cl1 0.354 0.607 0.608 0.589 0.554
SevMos-C3 0.340 0.600 0.606 0.578 0.550
Delta 0.386 0.622 0.642 0.609 0.565
Delta — WMD +15.9% +6.5% +10.3% +7.4%  +6.6%
Delta — SevMos-C1 +9.0% +2.5% +5.6% +34%  +2.0%

Table 3: Ranking metrics on selected subsets of the Test Data

NDCG.20 MAP  Prec.5 Prec.10 Prec.20
Full Test Data
SevMos-C1 w 0.358 0.586 0.609 0.575 0.531
SevMos-C3 w 0.352 0.582 0.602 0.573 0.528
Delta w 0.383 0.597 0.628 0.588 0.538
Delta w — SevMos-C1 w +7.0% +1.9% +3.1% +2.3% +1.3%
Delta w — Delta +2.1% +0.0% +02%  +0.3% -0.2%
Neg20+
SevMos-C1 w 0.404 0.620 0.635 0.608 0.560
SevMos-C3 w 0.396 0.616 0.635 0.605 0.557
Delta w 0.427 0.630 0.653 0.617 0.564
Delta w — SevMos-C1 w +5.7% +1.6% +2.8% +1.5% +0.7%
Delta w — Delta +0.9% -0.2% -0.9%  +0.2% -0.4%
OneNewWord
SevMos-C1 w 0.378 0.615 0.628 0.595 0.552
SevMos-C3 w 0.364 0.609 0.619 0.587 0.548
Delta w 0.408 0.624 0.644 0.606 0.558
Deltaw — SevMos-C1 w +7.9% +1.5% +2.5% +1.8% +1.1%
Delta w — Delta +1.5% -02% +0.0%  +0.0% -0.2%
AllNewWords
SevMos-C1 w 0.368 0.616 0.629 0.597 0.558
SevMos-C3 w 0.353 0.603 0.609 0.582 0.552
Delta w 0.389 0.621 0.642 0.607 0.562
Delta w — SevMos-C1 w +5.7% +0.8% +2.1% +1.7% +0.7%
Delta w — Delta +0.8% -0.2% +0.0% -0.3% -0.5%

Table 4: Ranking metrics for Relevance-Weighted models
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ranking performance on a subset of the test data
that should be harder to rank for factors and mod-
els that do not give some consideration to the non-
query words in the document. In this data a signif-
icant number of non-relevant documents contain
all the query words in the title. Comparing these
numbers with the previous table shows that there
is indeed a significant drop in performance for all
the factors and models considered here. However
while BM25’s NDCG metrics drop by 28.6%, the
Delta model’s NDCG drops by only 21.1%, with
the corresponding drops in MAP being 16.5% and
14.7%, respectively. The Delta model still shows
the best metrics on this test set, and its degree of
improvement over WMD is bigger, as expected
from a more complex model.

Model robustness is tested when queries with
words not seen during training (i.e. training
and validation datasets) are encountered. This
is explored in sections ‘OneNewWord’ and ‘All-
NewWords® of table 3. Both these sub-tables
show a consistently better performance by the
Delta model over the other approaches compared
here. Interestingly, the improvements in the Delta
model’s NDCG at 20 metrics over the other ap-
proaches are quite sizeable, even though for a sim-
ple un-weighted relevance classifier, the primary
target was precision and not NDCG.

6.2 Relevance Weighted Models

In this section we explore the performance of the
Delta model trained on relevance-weighted sam-
ples against the corresponding weighted versions
of the neural network models SevMos-C1 and
SevMos-C3. These metrics are shown in table 4.
A quick comparison with previous tables shows
that all the models turn in better NDCG num-
bers than their un-weighted versions. In particu-
lar, the “Delta w” model continues to depict sta-
tistically significant better metrics than the other
weighted neural network models “SevMos-C1 w”
and “SevMos-C3 w”.

Comparing the Delta weighted model against
the unweighted Delta model, we see that there is a
statistically significant improvment in the NDCG
metrics for all the Test subsets (at the 99% con-
fidence level). However the precision metrics do
not show a significant change. So by weighting the
samples we have been able to improve the NDCG
without hurting the precision.
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7 Concluding Remarks

We have demonstrated a Deep Learning approach
for learning textual relevance from a fairly small
labelled training dataset. We show that this model
is robust and it outperforms both traditional IR fac-
tors as well as related shallow (WMD) and deep
(SevMos) models based on continuous represen-
tations of text, with better results on the under-
specified query and term mismatch problems.

While the Delta model is comparable to other
local-interaction ranking models, we compute
fewer and richer interactions. We believe the fewer
interactions captured in the difference vector are
sufficient for the shorter queries in our data. As a
comparison, the model in (Guo et al., 2016) com-
putes a match histogram based on cosine similarity
between all document-query word pairs, and also
query-term IDF based weighting. We plan to test
this model on our data.

The main advantage to the separate semantic
vector approach is that document semantic vectors
can be pre-computed. Prediction run-time then
primarily depends on the complexity of the sim-
ilarity computation between these semantic vec-
tors. Local-interaction models, including ours, do
not allow this pre-computation, significantly in-
creasing the ranker’s run-time cost.

We believe the most promising directions for fu-
ture research include: modeling deeper semantics
(see example in appendix), unsupervised training
on data auto-generated from the corpus and fine-
tuning with supervised training, improving extrac-
tion of non-binary relevance levels and using a
pair-wise ranking target. Further investigation is
also warranted for incorporating these models into
PubMed.
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A  Document Relevance Levels

Deriving relevance level of a document to a query
from observed clicks is still experimental. We use
the following formula:

p x AbClicks + (1 — p) x FTClicks

+ % x IsDocWithoutFullText x AbClicks



with the parameters p 0.33,\ = 15, where
AbClicks is the number of observed clicks to the
document summary page in PubMed, FTClicks is
the number of observed clicks to the document’s
full text, if available, and the value of IsDocWith-
outFullText is 1 if the full text for that document
is not available, and O otherwise. The formula at-
tempts to capture the increased notion of relevance
if the user accesses the document’s full text, with-
out penalizing documents whose full-text is not
available. The parameters were hand-tuned to re-
flect domain experts’ relevance judgments.

B Rankings on Some Example Queries

Here are some example queries from the test set
showing the titles of the top 3 ranked documents
for the Delta weighted model, BM25 and WMD.
Relevance levels of the documents are indicated
inside parentheses before the titles.

B.1 Query: cryoglobulinemia

This word did not occur in training or validation
queries. Delta w ranks the most relevant docu-
ment at the top despite its use of an alternative
spelling. BM25 and WMD seem to prefer shorter
titles with exact matches. Number of documents
in the test dataset: relevant = 27, non-relevant =
26. Top three relevance levels: 39.0, 11.0, 4.0.

As ranked by Delta w:

i. (39.0) Diagnostics and treatment of cryoglobulinaemia:
it takes two to tango.

(0.0) Clinical features of 30 patients with cryoglobu-
linemia.

(4.0) The diagnosis and classification of the cryoglob-
ulinemic syndrome.

As ranked by BM25:
i. (11.0) Cryoglobulinemia Vasculitis.
ii. (3.0) Cryoglobulinemia (review).
iii. (1.0) Role of CXCL10 in cryoglobulinemia.
As ranked by WMD:
i. (11.0) Cryoglobulinemia Vasculitis.
ii. (3.0) Cryoglobulinemia (review).
iii. (3.0) Primary cryoglobulinemia with cutaneous fea-
tures.

ii.

ii.

B.2 Query: oesophageal cancer
review

The word oesophageal did not occur in training
or validation queries. The word review does not
occur in the title of all relevant documents. Both
Delta w and WMD successfully locate alternative
spellings of the word. Number of documents in
the test dataset: relevant = 22, non-relevant = 28.
Top three relevance levels: 7.0, 4.0, 4.0.
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As ranked by Delta w:

i. (7.0) Esophageal cancer: Recent advances in screen-
ing, targeted therapy, and management.
(3.0) Esophageal cancer: A Review of epidemiology,
pathogenesis, staging workup and treatment modali-
ties.
iii. (3.0) Esophageal Cancer Staging.

As ranked by BM2S:

i. (3.0) Imaging of oesophageal cancer with FDG-
PET/CT and MRI.
(0.0) Systematic review and network meta-analysis:
neoadjuvant chemoradiotherapy for locoregional eso-
phageal cancer.
(0.0) Serum autoantibodies in the early detection of
esophageal cancer: a systematic review.

As ranked by WMD:

1. (3.0) Esophageal Cancer Staging.

ii. (0.0) Outcomes in the management of esophageal can-
cer.

(4.0) Endoscopic Management of Early Esophageal
Cancer.

ii.

ii.

iii.

iii.

B.3 Query: chronic headache and

depression review

In this example, both WMD and Delta w are able
to leverage word vectors to relate headache to mi-
graine. However both miss the most relevant doc-
ument, whose title is “Psychological Risk Factors in
Headache” (relevance level = 6.0). This example
demonstrates the need for deeper semantic model-
ing. Number of documents in the test dataset: rel-
evant = 23, non-relevant = 18. Top three relevance
levels: 6.0, 3.0, 3.0.

As ranked by Delta w:
i. (3.0) Migraine and depression: common pathogenetic
and therapeutic ground?
ii. (3.0) Migraine and depression comorbidity: antide-
pressant options.
iii. (3.0) Migraine and depression:
morbidities?
As ranked by BM2S:
i. (3.0) Comprehensive management of headache and de-
pression.
ii. (0.0) Chronic daily headache in children and adoles-
cents.
iii. (0.0) Screening for depression and anxiety disorder in
children with headache.
As ranked by WMD:
i. (3.0) Comprehensive management of headache and de-
pression.
(3.0) Chronic headaches and the neurobiology of som-
atization.
(3.0) Migraine and depression: biological aspects.

bidirectional co-

ii.

iii.
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Abstract

We investigate if writers with demen-
tia can be automatically distinguished
from those without by analyzing linguis-
tic markers in written text, in the form of
blog posts. We have built a corpus of sev-
eral thousand blog posts, some by people
with dementia and others by people with
loved ones with dementia. We use this
dataset to train and test several machine
learning methods, and achieve prediction
performance at a level far above the base-
line.

1 Introduction

Dementia is estimated to become a trillion dollar
disease worldwide by 2018, and prevalence is ex-
pected to double to 74.7 million by 2030 (Prince,
2015). Dementia is a clinical syndrome caused by
neurodegenerative illnesses (e.g. Alzheimer’s Dis-
ease, vascular dementia, Lewy Body dementia).
Symptoms can include memory loss, decreased
reasoning ability, behavioral changes, and — rel-
evant to our work — speech and language impair-
ment, including fluency, word choice and sentence
structure (Klimova and Kuca, 2016).

Recently, there have been attempts to combine
clinical information with language analysis using
machine learning and NLP techniques to aid in di-
agnosis of dementia, and to distinguish between
types of pathologies (Jarrold et al., 2014; Ren-
toumi et al., 2014; Orimaye et al., 2014; Fraser
et al., 2015; Masrani et al., 2017). This would
provide an inexpensive, non-invasive and efficient
screening tool to assist in early detection, treat-
ment and institution of supports. Yet, much of the
work to date has focused on analyzing spoken lan-
guage collected during formal assessment, usually
with standardized exam tools.

Gabriel Murray
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Giuseppe Carenini
Dept. of Computer Science
University of British Columbia
carenini@cs.ubc.ca

There has been comparatively little work done
on analyzing written language spontaneously gen-
erated by people with dementia. In coming years,
there will be an increased number of tech-savvy
seniors using the internet, and popular online com-
mentators will continue to age. There will there-
fore be a growing dataset available in the form of
tweets, blog posts, and comments on social media,
on which to train a classifier. Provided our writers
have a verified clinical diagnosis of dementia, such
a dataset would be large, inexpensive to acquire,
easy to process, and require no manual transcrip-
tions.

There are downsides to using written language
samples as well. Unlike spoken language, writ-
ten text can be edited or revised by oneself or
others. People with dementia may have “good
days” and “bad days,” and may write only on days
when they are feeling lucid, and therefore written
samples may be biased towards more intact lan-
guage. Furthermore, we do not have an accompa-
nying audio file and patients are not constrained
to a single topic; people with dementia may have
greater facility discussing familiar topics. A non-
standardized dataset will also prevent the collec-
tion of common test-specific linguistic or acous-
tic features. However, working with a very large
dataset may be able to mitigate the effects of these
limitations.

In this work we gather a corpus of blog posts
publicly available online, some by people with de-
mentia and others by the loved ones of people with
dementia. We extract a variety of linguistic fea-
tures from the texts, and compare multiple ma-
chine learning methods for detecting posts written
by people with dementia. All models perform well
above the baseline, demonstrating the feasibility
of this detection task.
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2 Related Work

Early signs of dementia can be detected through
analysis of writing samples (Le et al., 2011; Ri-
ley et al., 2005; Kemper et al., 2001). In the “Nun
Study” researchers analyzed autobiographies writ-
ten in the US by members of the School Sisters
of Notre Dame between 1931-1996. Those nuns
who met criteria for dementia had lower grammat-
ical complexity scores and lower “idea density” in
their autobiographies.

Le et al. (2011) performed a longitudinal analysis
of the writing styles of three novelists: Iris Mur-
doch who died with Alzheimer’s disease (AD),
Agatha Christie (suspected AD), and P.D. James
(normal brain aging). Measurements of syntactic
and lexical complexity were made from 51 nov-
els spanning each of the author careers. Murdoch
and Christie exhibited evidence of linguistic de-
cline in later works, such as vocabulary loss, in-
creased repetition, and a deficit of noun tokens (Le
etal., 2011).

Despite evidence that linguistic markers predic-
tive of dementia can be found in writing samples,
there have been no attempts to train models to
classify dementia based on writing alone. Previ-
ous work has been successful in training models
using transcribed utterances from patients under-
going formal examinations, but this data is diffi-
cult to acquire and many models use audio and/or
test-specific features which would not be available
from online text (Rentoumi et al., 2014; Orimaye
etal., 2014, Fraser et al., 2014; Roark et al., 2011).
State-of-the-art classification accuracy of 81.92%
was achieved by Fraser et al. (2015) with logis-
tic regression using acoustic, textual, and test-
specific features on 473 samples from Demen-
tiaBank dataset, an American cohort of 204 per-
sons with dementia and 102 controls describing
the “Cookie Theft Picture”, a component of the
Boston Diagnostic Aphasia Examination (Becker
et al., 1994; Giles et al., 1996). More recently,
these results have been extended via domain adap-
tation by Masrani et al. (Masrani et al., 2017).

Our methods are similar to Fraser et al. (2015),
with the main difference being the dataset used
and their inclusion of audio and test-specific fea-
tures, which are not available in our case. To the
best of our knowledge, ours is the first compari-
son of models trained exclusively on unstructured
written samples from persons with dementia.
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3 Experimental Design

In this section, we describe the novel blog corpus
and experimental setup.

3.1 Corpus

We scraped the text of 2805 posts from 6 public
blogs as described in Table 1. Three blogs were
written by persons with dementia (First blogger:
male, AD, age unknown. Second blogger: female,
AD, age 61. Third blogger: Male, Dementia with
Lewy Bodies, age 66) and three written by fam-
ily members of persons with dementia to be used
as control (all female, ages unknown). Other de-
mographic information, such as education level,
was unavailable. From each of the three demen-
tia blogs, we manually filtered all texts not writ-
ten by the owner of the blog (e.g. fan letters) or
posts containing more images than text. We were
left with 1654 samples written by persons with de-
mentia and 1151 from healthy controls. The script
to download the corpus is available at https:
//github.com/vadmas/blog_corpus/.

3.2 Classification Features

Following Fraser et al. (2015), we extracted 101
features across six categories from each blog post.
These features are described below.

Parts Of Speech (14) We use the Stanford Tag-
ger (Toutanova et al., 2003) to capture the fre-
quency of various parts of speech tags (nouns,
verbs, adjectives, adverbs, pronouns, determin-
ers, etc). Frequency counts are normalized by the
number of words in the sentence, and we report
the sentence average for a given post. We also
count not-in-dictionary words and word-type ra-
tios (noun to verb, pronoun to noun, etc).

Context Free Grammar (45) Features which
count how often a phrase structure rule occurs in a
sentence, including NP— VP PP, NP—DT NP, etc.
Parse trees come from the Stanford parser (Klein
and Manning, 2003).

Syntactic Complexity (28) Features which
measure the complexity of an utterance through
metrics such as the depth of the parse tree, mean
length of word, sentences, T-Units and clauses and
clauses per sentence. We used the L2 Syntactic
Complexity Analyzer (Lu, 2010).

Psycholingustic (5) Psycholinguistic features
are linguistic properties of words that effect word



URL Posts Mean words Start Date Diagnosis
https://creatingmemories.blogspot.ca/ 618 24222 (s=169.42) Dec 2003 AD
http://living-with-alzhiemers.blogspot.ca/ | 344 263.03 (s=140.28) Sept 2006 AD
http://parkblog-silverfox.blogspot.ca/ 692 393.21 (s=181.54) May 2009 Lewy Body
http://journeywithdementia.blogspot.ca/ | 201 803.91 (s=548.34) Mar 2012  Control
http://earlyonset.blogspot.ca/ 452 615.11 (s=206.72)  Jan 2008  Control
http://helpparentsagewell.blogspot.ca/ 498 227.12 (s=209.17)  Sept 2009  Control

Table 1: Blog Information.

processing and learnability (Salsbury et al., 2011).
We used five psycholinguisic features: Familiar-
ity, Concreteness, Imageability, Age of acquisi-
tion, and the SUBTL , which is a measure of the
frequency with which a word is used in daily
life (Kuperman et al., 2012; Brysbaert and New,
2009a; Salsbury et al., 2011). Psycholinguis-
tic word scores are derived from human ratings!
while the SUBTL frequency norm? is based on
50 million words from television and film subti-
tles (Brysbaert and New, 2009b).

Vocabulary Richness (4) We calculated four
metrics which capture the range of vocabulary in
a text: type-token ratio, Brunet’s index, a length
insensitive version of the type-token ratio, Hon-
ore’s statistic, and the moving-average type-token
ratio (MATTR) (Asp and De Villiers, 2010; Cov-
ington and McFall, 2010). These metrics have
been shown to be effective in previous AD re-
search (Bucks et al., 2000; Fraser et al., 2015)

Repetitiveness (5) We represent sentences as
TF-IDF vectors and compute the cosine similarity
between sentences. We then report the proportion
of sentence pairs below three similarity thresholds
(0, 0.3, 0.5) as well as the min and average cosine
distance across all pairs of sentences.

3.3 Training and Testing

We perform a 9-fold cross validation by training
each model on all the posts of four blogs and test-
ing on the remaining two, where we assure that
each test set contains the posts of one control blog
and one dementia blog. Within each fold we per-
form a feature selection step before training where
we select for inclusion into the model the first k
features which have the highest absolute correla-
tion with the labels in the training fold.

1http: //websites.psychology.uwa.edu.
au/school/MRCDatabase/uwa_mrc.htm
http://subtlexus.lexique.org/
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4 Results

For each machine learning model, we calculate the
ROC curve and the area under the curve (AUC),
comparing with a random performance baseline
AUC of 0.5. The AUC results are shown in Fig-
ure 1, with all models well above the baseline of
0.5. The best performing models are logistic re-
gression and neural networks, with average AUC
scores of 0.815 and 0.848, respectively.

The SUBTL measure of vocabulary richness
was the feature most correlated with the outcome
variable in eight out of nine folds. Figure 2 shows
the SUBTL scores for each blog post in the cor-
pus, arranged by blog and with the bloggers with
dementia shown in the top row. A lower score in-
dicates a richer vocabulary. We can see that the
bloggers with dementia have a less rich vocabu-
lary. Interestingly, however, the longitudinal trend
does not show their vocabularies worsening during
the time-period captured in this corpus. The analy-
sis of other features highly informative for the tar-
get prediction is ongoing, and additional findings
will be discussed at the workshop.

5 Conclusion

We have shown that it is possible to distinguish
bloggers with dementia from those without, on a
novel corpus of blog data. We extracted linguis-
tic features from the texts and compared a large
number of machine learning methods, all of which
performed well above the baseline. While feature
analysis is ongoing, we have made some interest-
ing observations about the effect of the SUBTL
measure of vocabulary richness. Future work will
include liaising with patient and caregiver support
groups to expand this new dementia corpus, in-
clusion of a topic clustering preprocessing step to
control for variation across content, and further
longitudinal analysis.
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Figure 1: Comparison of models. We show the mean AUC and 90% confidence intervals across a 9-fold
CV. All the posts of a blog appear in either the training or test set, but not both.
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Abstract

Literature in Molecular Biology is abun-
dant with linguistic metaphors. There have
been works in the past that attempt to
draw parallels between linguistics and bi-
ology, driven by the fundamental premise
that proteins have a language of their own.
Since word detection is crucial to the de-
cipherment of any unknown language, we
attempt to establish a problem mapping
from natural language text to protein se-
quences at the level of words. Towards this
end, we explore the use of an unsupervised
text segmentation algorithm to the task of
extracting “biological words” from pro-
tein sequences. In particular, we demon-
strate the effectiveness of using domain
knowledge to complement data driven ap-
proaches in the text segmentation task, as
well as in its biological counterpart. We
also propose a novel extrinsic evaluation
measure for protein words through protein
family classification.

1 Introduction

Research works in the field of Protein Linguistics
(Searls, 2002) are largely based on the underlying
hypothesis that proteins have a language of their
own. However, modeling of protein molecules us-
ing linguistic approaches is yet to be explored in
depth. This might be due to the structural com-
plexities inherent to protein molecules. Instead of
resorting to purely wet lab experiments, we pro-
pose to make use of the abundant data available
in the form of protein sequences together with
knowledge from domain experts to model the pro-
tein language. From a linguistic point of view,
the first step in deciphering an unknown language

ashishvt@google.com

Chennai-600036, India

sutanuc@cse.iitm.ac.in

will be to identify the independent lexical units or
words of the language. This motivates our current
attempt to establish a problem mapping from nat-
ural language text to protein sequences at the level
of words. Towards this end, we explore the use
of an unsupervised word segmentation algorithm
to the task of extracting “’biological words” from
protein sequences.

Many unsupervised word segmentation algo-
rithms use compression based techniques ((Chen,
2013), (Hewlett and Cohen, 2011), (Zhikov et al.,
2010), (Argamon et al., 2004), (Kityz and Wilksz,
1999)) and are largely centred around the princi-
ple of Minimum Description Length (MDL). We
use the MDL based segmentation algorithm de-
scribed in (Kityz and Wilksz, 1999) which makes
use of the repeating subsequences present within
text corpus to compress it. It is found that the seg-
ments generated by this algorithm exhibit close re-
semblances to words of English language. There
are also other non-compression based unsuper-
vised word segmentation and morphology induc-
tion algorithms in literature ((Mochihashi et al.,
2009), (Hammarstrom and Borin, 2011), (Sori-
cut and Och, 2015)). However, in this context of
protein sequence analysis, we have chosen to use
MDL based unsupervised segmentation because it
resembles closely the first natural attempt of a lin-
guist in identifying words of an unknown language
i.e. looking for repeating subsequences as candi-
dates for words.

As we do not have access to ground-truth
knowledge about protein words, we propose to
use a novel extrinsic evaluation measure based on
protein family classification. SCOPe is an ex-
tended database of SCOP hierarchy (Murzin et al.,
1995) which classifies protein domains based on
the structural and sequence similarities. We have
proposed a MDL based classifier for the task of
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automatic SCOPe prediction. The performance of
this classifier is used as an extrinsic measure of the
quality of protein segments.

Finally, the MDL based word segmentation
used in (Kityz and Wilksz, 1999) is purely data
driven and does not have access to any domain-
specific knowledge source. We propose that con-
straints based on domain knowledge can be prof-
itably used to improve the performance of segmen-
tation algorithms. In English, we use constraints
based on pronounceability rules to improve word
segmentation. In protein segmentation, we use
knowledge of SCOPe Class labels (Fox et al.,
2014) to impose constraints. In both cases, con-
straints based on domain knowledge are seen to
improve the segmentation quality.

To summarize, the main contributions of our
work are the following :

1. We attempt to establish a mapping from pro-
tein sequences to language at the level of
words which is a vital step in the linguistic
approach to protein language decoding. To-
wards this end, we explore the use of an un-
supervised text segmentation algorithm to the
task of extracting “biological words” from
protein sequences.

2. We propose a novel extrinsic evaluation mea-
sure for protein words via protein family clas-
sification.

3. We demonstrate the effectiveness of us-
ing domain knowledge to complement data
driven approaches in the text segmentation
task, as well as in its biological counterpart.

2 Related Work

Protein Linguistics (Searls, 2002) is the study of
applying linguistic approaches to understand the
structure and function of protein molecules. Re-
search in the field of Protein Linguistics is largely
based on the underlying assumption that proteins
have a language of their own. David Searls draws
many analogies between Linguistics and Molecu-
lar Biology to show how a linguistic metaphor can
be seen interwoven into many problems of Molec-
ular Biology. The fundamental analogy is that the
20 amino acids of proteins and 4 nucleotides of
genes are analogous to the 26 letters in English al-
phabet.

Literature is abundant with parallels between
language and biology (Bralley, 1996; Searls,
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2002; Atkinson and Gray, 2005; Gimona, 2006;
Tendulkar and Chakraborti, 2013). There are strik-
ing similarities between the structure of a protein
molecule and a sentence in a Natural Language
text some of which have been highlighted in Fig-
ure 1.

Gimona (2006) presents an excellent discus-
sion on linguistics-based protein annotation and
raises the interesting question of whether compo-
sitional semantics could improve our understand-
ing of protein organization and functional plastic-
ity. Tendulkar and Chakraborti (2013) also have
drawn many parallels between biology and lin-
guistics.

The wide gap between available primary se-
quences and their three dimensional structures
leads to the thought that the current protein struc-
ture prediction methods might struggle due to lack
of understanding of the folding code from protein
sequence. If biological sequences are analogous
to strings generated from a specific but unknown
language, then it will be useful to find the rules of
the unknown language. And, word identification
is fundamental to the task of learning rules of an
unknown language.

Motomura et. al ((2012),(2013)) use a fre-
quency based linguistic approach to protein de-
coding and design. They call the short consequent
sequences (SCS) present in protein sequences as
words and use availability scores to assess the bi-
ological usage bias of SCS. Our approach of using
MDL for segmentation is interesting in that it does
not require prior fixing of word length as in (Mo-
tomura et al., 2012), (Motomura et al., 2013).

3 Word Segmentation

Word is defined as a single distinct conceptual
unit of language, comprising inflected and vari-
ant forms'. In English, though space acts as a
good approximation for word delimiter, proper
nouns like New York or phrases like once in a blue
moon make sense only when taken as a single unit.
Therefore, space is not a good choice for delimit-
ing atomic units of meaning.

Imagine a corpus of English text with spaces
and other delimiters removed. Now, word seg-
mentation is the problem of dividing a continu-
ous piece of text into meaningful units. For exam-
ple, imagine a piece of text in English with delim-
iters removed such as ‘BroonTHETREE'. The contin-

'https://en.oxforddictionaries.com/definition/word
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uous text can be segmented into four meaningful
units as ‘BIRD’,ON’, THE';TREE’. Analogously, we de-
fine protein segmentation as the problem of divid-
ing the amino acid sequence of a protein molecule
into biologically meaningful segments. For exam-
ple, the toy protein sequence *MATGQKLMRAIRVFEFGG-
PEVLKLQSDVVVPVPQSHQ' can consist of three segments
"MATGQKLMRAIR’, *VFEFGGPEV’, 'LKLQSDVVVPVPQSHQ'. For
our work, we assume that the word segmentation
algorithm does not have knowledge about English
lexicon. The significance of this assumption can
be understood in the context of protein segmenta-
tion. Since the ground truth about words in protein
language is not known, we consider the problem of
protein segmentation to be analogous to unsuper-
vised word segmentation in English.

We begin this section by explaining why MDL
can be a good model selection principle for learn-
ing words followed by description of the algorithm
used and results obtained on Brown corpus.

3.1 MDL for Segmentation

According to the principle of Minimum Descrip-
tion Length (MDL),

Data compression — Learning

Any regularity present in data can be used to
compress the data which can also be seen as learn-
ing of a model underlying the data (Griinwald,
2005). In an unsegmented text corpus, the rep-
etition of words creates statistical regularities.
Therefore, the key idea behind using MDL for
word segmentation is that we can learn word-like
segments by compressing the text corpus.

Description Length (DL) of a corpus X is de-
fined as the number of bits needed to encode it us-
ing Shannon Fano coding [ (Shannon, 2001),(Ki-
tyz and Wilksz, 1999)] and is expressed as given
below.

DL(X)=-) c() logc‘g?’) (1)
xeV

where, V' is the language vocabulary, c(z) is the
frequency of word z in the given corpus and | X|
is total number of words in X.

As an unsupervised learning algorithm does not
have access to language lexicon, the initial DL
of the corpus is calculated by using the language
alphabet as its vocabulary. When the algorithm
learns word-like segments, we can expect the DL
of corpus to get reduced. According to MDL, the
segmentation model that best minimizes the com-
bined description length of data + model (i.e. cor-
pus+ vocabulary) is the best approximation of the
underlying word segmentation.

An exponential number of candidate segmenta-
tions is possible for a piece of unsegmented text.
For example, some candidate segmentations for
the text 'BIRDONTHETREE’ are given below.

’B’IRDONTHETREE’
’BI’’RD’;ONTHET’R’JE’E’
'B’)T’R’,D’ONTHET’REE’
'BIR’;D’,ONT’,’HE’, TREE’
"BIRDON’, THE’, TREE’
"BIRD’,;ON’, THETREE’
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(Kityz and Wilksz, 1999) define a goodness
measure called Description Length Gain (DLG)
to quantify the compression effect produced by a
candidate segmentation. DLG of a candidate seg-
mentation is equal to the sum of DLGs of indi-
vidual segments within it. DLG of a segment s
is defined as the reduction in description length
achieved by retaining this segment as a single lex-
ical unit while aDLG stands for the average de-
scription length gain as given below.

DLG(s) = DL(X)— DL(X[r — s] @ s)

_ DLG(s)

o ls)

where, X [r — s] represents the new corpus ob-
tained by replacing all occurrences of the segment
s by a single token 7, ¢(s) is the frequency of the
segment s in corpus and @ represents the con-
catenation of two strings with a delimiter in be-
tween. This is necessary because MDL minimizes
the combined DL of corpus and vocabulary. (Ki-
tyz and Wilksz, 1999) uses Viterbi algorithm to
find the optimal segmentation of a corpus. Time
complexity of the algorithm is O(mn) where n
is the length of the corpus and m is the maximal
word length.

aDLG(s)

3.2 Imposing Language Constraints

MDL based algorithm as described in (Kityz
and Wilksz, 1999) performs uninformed search
through the space of word segmentations. We
propose to improve the performance of unsuper-
vised algorithm by introducing constraints based
on domain knowledge. These constraints help to
improve the word-like quality of the MDL seg-
ments. For example, in English domain, we have
used the following language constraints, mainly
inspired by the fact that legal English words are
pronounceable.

1. Every legal English word has at least one
vowel in it

2. There cannot be three consecutive conso-
nants in the word beginning except when the
first consonant is ’s’

. Some word beginnings are impossible. For
example, 'db’, ’km’, ’lp’, 'mp’, 'ns’, 'ms’,
td’, ’kd’, "md’, ’ld’, °bd’, ’cd’, ’fd’, gd’,
’hd’, ’jd’, ’nd’, ’pd’, ’qd’, ’rd’, ’sd’, ’vd’,
'wd’, 'xd’, Cyd’, Czd’
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4. Bigrams having high probability of occur-
rence at word boundaries are obtained apriori
from a knowledge base to facilitate splitting
of long segments

3.3 MDL Segmentation of Brown Corpus

The goal of our experiments is twofold. First, we
apply an MDL based algorithm to identify word
boundaries. Second, we use constraints based on
domain knowledge to further constrain the search
space and thereby improving the quality of seg-
ments.

The following is a sample input text from
Brown corpus (Francis and Kucera, 1979) used in
our experiment.

implementationofgeorgiasautomobiletitlelaw
wasalsorecommendedbytheoutgoingjury
iturgedthatthenextlegislatureprovideenab
lingfundsandresettheeffectivedatesothata
norderlyimplementationofthelawmaybeeffect

The output segmentation obtained after apply-
ing MDL algorithm is given below. It can be seen
that the segments identified by the MDL algorithm
are close to the actual words of English language.

implementationof  georgias —automo-
bile title | a w wasalso recom-
mend edbythe outgoing jury i tur
g edthat thenext legislature pro-
vide enabling funds andre s et
theeffective d ate sothat anorderly
implementationof thelaw maybe ef-
fect ed

The segments generated by MDL are improved
by applying the language constraints listed in pre-
vious section. Sample output is shown below.
We can observe the effect of constraints on seg-
ments, for example, [1][a][w] is merged into [law]
; [d][ate] is merged into [date].

implementationof  georgias —automo-
bile title law wasalso recommend
edbythe outgoing jury i tur ged

that thenext legislature provide en-
abling funds andre set theeffective
date sothat anorderly implementa-
tionof thelaw maybe effect ed

Segmentation results are evaluated by averaging
the precision and recall over multiple random sam-
ples of Brown Corpus. A segment is declared as



Algorithm ‘ Precision ‘ Recall ‘

MDL (Kityz and 79.24 34.36
Wilksz, 1999)
MDL + Constraints 82.57 41.06

Table 1: Boundary Detection by MDL Segmenta-
tion

‘ Algorithm ‘ Precision ‘ Recall ‘
MDL(Kityz and | 39.81 17.26
Wilksz, 1999)

MDL + Constraints 52.94 26.36

Table 2: Word Detection by MDL Segmentation

a correct word only if both the starting and ending
boundaries are identified correctly by the segmen-
tation algorithm. Word precision and word recall
are defined as follows.

.. No. of correct segments
Word Precision = g

Total no. of segments
No. of correct segments

Word Recall =
ord eca Total no. of words in corpus

Boundary precision and boundary recall are de-
fined as follows.

# correct segment boundaries

Boundary Precision = -
t # segment boundaries

# correct segment boundaries

Boundary Recall =
oundary Reca # word boundaries

The performance of our learning algorithm av-
eraged over 10 samples of size 10,000 characters
(from random indices in Brown corpus) is shown
in Tables 1 and 2. The reported results are in line
with our proposed hypothesis that domain con-
straints help in improving the performance of un-
supervised MDL segmentation.

4 Protein Segmentation

In this section, we discuss our experiments in pro-
tein domain. Choice of protein corpus is very
critical to the success of MDL based segmenta-
tion. If we look at the problem of corpus selection
from a language perspective, we know that simi-
lar documents will share more words in common
than dissimilar documents. Hence, we have cho-
sen our corpus from databases of protein families
like SCOPe and PROSITE. We believe that protein
sequences performing similar functions will have
similar words.
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4.1 Qualitative Analysis

The objective of our experiments on PROSITE
database (Sigrist et al., 2012) is to qualitatively
analyse the protein segments. It can be observed
that within a protein family, some regions of the
protein sequences have been better conserved than
others during evolution. These conserved regions
are found to be important for realizing the protein
function and/or for the maintenance of its three di-
mensional structure. As part of our study, we ex-
amined if the MDL segments are able to capture
the conserved residues represented by PROSITE
patterns.

MDL segmentation algorithm was applied to 15
randomly chosen PROSITE families containing
varying number of protein sequences. > Within a
PROSITE family, some sequences get compressed
more than others. An interesting observation is
that the less compressed sequences are those that
have evolved over time and hence have low se-
quence similarity with other members of the pro-
tein family. But, they have the conserved residues
intact and MDL segmentation algorithm is able to
capture those conserved residues.

For example, consider the PROSITE pattern 3
for Amidase enzyme (PS00571) G-[GAV]-S-[GSI(2)-G-
Xx-[GSAEI{GSAVYCT]-x-[LIVMT]- [GSA]-x(6)-[GSAT]-x- [GA]-x-[DE]-x-
[GAJ-x-S- [LIVM]-Rx-P-[GSACTL] . The symbol ’X’ in a
PROSITE pattern is used for a position where any
amino acid is accepted. 'x(6)’ stands for a chain
of five amino acids of any type. For patterns with
long chains of x, MDL algorithm captures the con-
served regions as a series of adjacent segments.
For example, in the protein sequence with UniPro-
tKB id 000519, the conserved residues and MDL
segments are shown in Figure 2.

As another example, consider the family
PS00319 with pattern G-[vT-[Ex}-[Fy]-v-c-c-P . This
PROSITE pattern is short and does not contain any
’x’. In such cases, the conserved residues can get
captured accurately by MDL segments. The pro-
tein sequence with UniProtKB id P14599 has less
sequence similarity but its conserved residues Gve-
rvcep are captured exactly in a single MDL seg-
ment. We also studied the distribution of segment
lengths among the PROSITE families. A single
corpus was created combining the sequences from

>The output segments are available at
https://1drv.ms/f/s! AnQHeUjduCq0ae9rWhuoybZoA-U
3A PROSITE pattern like [AC]-x-V-x(4)-AV is to be

translated as: [Ala or Cys]-any-Val-any-any-any-any-Ala-Val



MVQYELWAALPGASGVALACCFVAAAVALRWSGRRTARGAVVRARQRQRAGLENMD
RAAQRFRLQNPDLDSEALLALPLPQLVQKLHSRELAPEAVLFTYVGKAWEVNKGTNCV
TSYLADCETQLSQAPRQGLLYGVPVSLKECFTYKGQDSTLGLSLNEGVPAECDSVVV
HVLKLQGAVPFVHTNVPQSMFSYDCSNPLFGQTVNPWKSSKSPGGSSGGEGALIGS
GGSPLGLGTDIGGSIRFPSSFCGICGLKPTGNRLSKSGLKGCVYGQEAYRLSVGPM...

Conserved residues hit by PROSITE pattern

M,V,Q,Y,E, L, W,A ALPGASG, V,A,L,A,C,C, F, V,AAAVA, L, R, W,S,G,R, R, T,
AR,G AV, VR AR,QR,QRAG,L E NMD,R,A, A QRFRLQNPDLDSE, A,
LLALPLPQLVQK, L, H, SREL, A, P,E,A, V, L, F, TYV, GKAWEVNKGTNCVTSYL, A,
DCETQLSQAPRQGLLYGVPVSLKECF, T, Y, K, G, Q, D, STLGLSLNEG, V, PAEC, D,
S, V, V, V, H, VLKLQGAVPFVHTNVPQSM, F, SYDCSNPLFGQT, V, NPW, K, S, S, K,
S, PGGSSGG, EGALIGSGGSPLGLGTDIGGSIRFPS, S,
FCGICGLKPTGNRLSKSGLK, G, C, V,Y, G, Q, E, A, V,R, L, SVGPM...

Two consecutive MDL Segments capturing the conserved
residues

Figure 2: Conserved residues and MDL segments
of a protein sequence (UniProtKB id O00519) in
PROSITE family PS00571

| | | | | | | | | |
08 Common across PROSITE families
02 Unique to PROSITE families
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Figure 3: Distribution of MDL segment lengths
among PROSITE families PS00319, PS00460,
PS00488, PS00806 and PS00818

5 randomly chosen PROSITE families and the dis-
tribution of segment lengths is shown in Figure 3.
Protein segments that were common among the
families were typically four or five amino acids
in length. However, within each individual family
there were longer segments unique to that family.
Very long segments (length >15) are formed when
the corpus contains many sequences with high se-
quence similarities.

4.2 Quantitative Analysis

Unlike in English language, we do not have access
to ground truth about words in proteins. Hence, we
propose to use a novel extrinsic evaluation mea-
sure based on protein family classification. We
describe a compression based classifier that uses
the MDL segments (envisaged as words in pro-
teins) for SCOPe predictions.The performance of
the MDL based classifier on SCOPe predictions is
used as an extrinsic evaluation measure of protein
segments.

4.2.1 MDL based Classifier

Suppose we want to classify a protein sequence
p into one of k protein families, the MDL based
classifier is given by,

family (p) = argmax DLG(p, family, ;) (2)
family

where DLG(p,family,) is the measure of the com-
pression effect produced by protein sequence p in
the protein corpus of family,. We hypothesize that
a protein sequence will be compressed more by
the protein family it belongs to, because of the
presence of similar words among the same family
members.

Experimental Setup The dataset used for pro-
tein classification is ASTRAL Compendium
(Chandonia et al., 2004). It contains protein
domain sequences for domains classified by the
SCOPe hierarchy. ASTRAL 95 subset based on
SCOPe v2.05 is used as training corpus and the
test set is created by accumulating the protein do-
main sequences that were newly added in SCOPe
v2.06. Performance of the MDL classifier is dis-
cussed in four SCOPe levels - Class, Fold, Su-
perfamily and Family. At all levels, we consider
only the protein domains belonging to four SCOPe
classes A,B,C and D representing All Alpha, All
Beta, Alpha+Beta, Alpha/Beta respectively. The
blind test set contains a total of 4821 protein do-
main sequences.

SCOPe classification poses the problem of class
imbalance due to the non-uniform distribution of
domains among different classes at all SCOPe lev-
els. Due to this problem, we use macro precision
and macro recall (Yang, 1999) as performance
measures and are given by the below equations.

1< TP,
Precision = - _— 3)
macro q ; T_PZ + F_P,L
1< TP
Recall = - g R S— 4)
macro q — TP,L + FNZ

4.2.2 Performance of MDL Classifier

Class Prediction Out of 4821 domain se-
quences in the test data, the MDL classifier ab-
stains from prediction for 71 sequences due to
multiple classes giving the same measure of com-
pression. The MDL Classifier achieves a macro
precision of 75.64% and macro recall of 69.63%
in Class prediction.
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SCOPe level | Macro Macro
Average | Average
Precision | Recall
Class 75.64 69.63
Fold 60.59 45.08
Super family || 56.65 43.73
Family 43.25 37.7
Table 3: Performance of MDL Classifier in
SCOPe Prediction
SCOPe level | Weighted | Weighted
Average | Average
Precision | Recall
Class 76.38 69.77
Fold 81.49 49.25
Super family || 72.80 48.23
Family 45.02 35.85
Table 4: Performance of MDL Classifier in

SCOPe Prediction - Weighted Measures

Fold Prediction SCOPe v2.05 contains a total
of 1208 folds out of which 991 folds belong to
classes A,B,C and D. The distribution of protein
sequences among the folds is non-uniform ranging
from 1 to 2254 sequences with 250 folds contain-
ing only one sequence. MDL Classifier achieves
a macro precision of 60.59% and macro recall of
45.08% in fold classification.

Impact of Corpus Size The number of pro-
tein domains per class decreases greatly down the
SCOPe hierarchy. The folds (or families, super-
families) that have very few sequences should have
less contribution in the overall prediction accu-
racy. We weighted the macro measures based
on the number of instances which resulted in the
weighted averages reported in Table 4. The MDL
classifier achieves a weighted macro precision of
81.49% in SCOPe fold prediction which is higher
than the precision at any other level. This obser-
vation highlights the quality of protein segments
generated by MDL algorithm. It is also important
to note that fold prediction is an important sub task
of protein structure prediction just as how word
detection is crucial to understanding the meaning
of a sentence.

4.3 MDL Classifier as a Filter

The folds which are closer to each other in the
SCOPe hierarchy tend to compress protein se-
quences almost equally. Instead of returning a
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single fold giving maximum compression, if the
MDL classifier returns the top-k candidates, then
we can reduce the search space for manual or high
cost inspections. We define utility of the MDL
classifier when used as a filter as given below.

:1:4.. _ No. of predictions where correct fold is in top-k list
Utlhty - Total no. of predictions

Figure 4 shows the k versus utility on test data. It
can be seen from the graph that at k=400 (which is
approximately 33% of the total number of folds),
top-k predictions are able to give 93% utility. In
other words, in 93% of the test sequences, MDL
filter can be used to achieve nearly 67% reduction
in the search space of 1208 folds.

4.4 TImpact of Constraints based on Domain
Knowledge

Similar to experiments in English domain, the
MDL algorithm on protein dataset can also be
enhanced by including constraints from protein
domain knowledge. For example, in a protein
molecule, hydrophobic amino acids are likely
to be found in the interior, whereas hydrophilic
amino acids are more likely to be in contact with
the aqueous environment. This information can be
used to introduce checks on allowable amino acids
at the beginning and end of protein segments.
Unlike in English, identifying constraints based
on protein domain knowledge is difficult because
there are no lexicon or protein language rules read-
ily available. Domain expertise is needed for get-
ting explicit constraints.

As proof of concept, we use the SCOPe class
labels of protein sequences as domain knowledge
and study its impact on the utility of the MDL fil-
ter. After introducing class knowledge, MDL filter
achieves an utility of 93% at k=100, i.e., in 93%
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Figure 5: Variation of Filter Utility with Filter Size
k after adding constraints based on SCOPe Class
labels

of the test sequences, MDL filter can be used to
achieve nearly 90% reduction in the search space
of 1208 folds. In the absence of class knowledge,
the same filter utility was obtained at k=400 which
is only 67% reduction of search space (Figure 5).
Through this experiment, we emphasize that ap-
propriate domain knowledge can help in improv-
ing the quality of word segmentation in protein se-
quences. Such domain knowledge could be im-
posed in the form of constraints during unsuper-
vised learning of protein words. We would like to
emphasize the fact that introducing domain knowl-
edge in the form of class labels as in supervised or
semi-supervised learning frameworks may not be
appropriate in protein sequences due to our current
ignorance of the true protein words.

5 Discussion

In the words of Jones and Pevzner (Jones and
Pevzner, 2004), "It stands to reason that if a
word occurs considerably more frequently than
expected, then it is more likely to be some sort of
’signal’ and it is crucially important to figure out
the biological meaning of the signal”. In this pa-
per, we have proposed protein segments obtained
from MDL segmentation as the signals to be de-
coded.

As part of our future work, we would like to
study the performance of SCS words (Motomura
et al., 2012), (Motomura et al., 2013) in protein
family classification and compare it against MDL
words; We would also like to measure the avail-
ability scores of MDL segments. It may also be in-
sightful to study the co-occurrence matrix of MDL
segments.

6 Conclusion

Given the abundance of unlabelled data, data
driven approaches have witnessed significant suc-
cess over the last decade in several tasks in vi-
sion, language and speech. Inspired by the corre-
spondence between biological and linguistic tasks
at various levels of abstraction as revealed by the
study of Protein Linguistics, it is only natural that
there would be a propensity to extend such ap-
proaches to several tasks in Computational Biol-
ogy. A linguist already knows a lot about language
however, and a biologist knows lot about biology;
so, it does make sense to incorporate what they al-
ready know to constrain the hypothesis space of a
machine learner, rather than make the learner re-
discover what the experts already know. The latter
option is not only demanding in terms of data and
computational resources, it may need us to solve
riddles we just do not have answers to. Classifying
a piece of text as humorous or otherwise is hard at
the state of the art; there are far too many inter-
actions between variables than we can model, not
only do the words interact between them, they also
interact with the mental model of the person read-
ing the joke. It stretches our wildest imaginations
to think of a purely bottom up Deep Learner that
is deprived of common-sense and world knowl-
edge to learn such end-to-end mappings reliably
by looking at data alone. The same is true in
biological domains where non-linear interactions
between a large number of functional units make
macro-properties “emerge” out of interactions be-
tween individual functional units. We feel that a
realistic route is one where top down (knowledge
driven) approaches complement bottom up (data
driven) approaches effectively. This paper would
have served a modest goal if it has aligned itself to-
wards demonstrating such a possibility within the
scope of discovering biological words, which is
just one small step in the fascinating quest towards
deciphering the language in which biological se-
quences express themselves.
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Abstract

This paper evaluates the impact of vari-
ous event extraction systems on automatic
pathway curation using the popular mTOR
pathway. We quantify the impact of train-
ing data sets as well as different machine
learning classifiers and show that some
improve the quality of automatically ex-
tracted pathways.

1 Introduction

Biological pathways encode sequences of biolog-
ical reactions, such as phosphorylation, activa-
tion etc, involving various biological species, such
as genes, proteins (Aldridge et al., 2006; Kitano,
2002). Studying and analyzing pathways is cru-
cial to understanding biological systems and for
the development of effective disease treatments
and drugs (Creixell et al., 2015; Khatri et al,,
2012). There have been numerous efforts to re-
construct detailed process-based and disease level
pathway maps such as Parkinson disease map (Fu-
jitaetal., 2014), Alzheimers disease Map (Mizuno
et al., 2012), mTOR pathway Map (Caron et al.,
2010), and the TLR pathway map (Oda and Ki-
tano, 2006). Traditionally, these maps are con-
structed and curated by expert pathway curators
who manually read numerous biomedical docu-
ments, comprehend and assimilate the knowledge
in them and construct the pathway.

With increasing number of scientific publica-
tions manual pathway curation is becoming more
and more impossible. Therefore, Automated Path-
way Curation (APC) and semi-automated biolog-
ical knowledge extraction has been an active re-
search area (Ananiadou et al., 2010; Ohta et al.,
2013; Szostak et al., 2015) trying to overcome
the limitations of manual curation using vari-
ous techniques from hand-crafted NLP systems

Michael Spranger
Sony Computer Science
Laboratories Inc.
Tokyo, Japan
michael.spranger@gmail.com

(Allen et al., 2015) to machine learning techniques
(Bjorne et al., 2011). Machine-learning NLP sys-
tems, in particular, show good performance in
BioNLP tasks, but they are still performing less
good in automated pathway curation, partly be-
cause there have been few attempts to measure the
performance of NLP systems for APC directly.

Recently, there has been some attempt at rem-
edying the situation and new datasets and eval-
uation measures have been proposed. For in-
stance, Spranger et al. (2016) use the popu-
lar human-generated mTOR pathway map (Caron
et al., 2010; Efeyan and Sabatini, 2010; Katiyar
etal., 2009) and quantify the performance of a par-
ticular APC system and its ability to recreate the
complete pathway automatically. Results reported
were mixed.

One of the key components in such APC sys-
tems is identification of triggers, events and their
relationships. These machine learning-based sys-
tems are essentially just supervised classification
components.

This paper explores whether we can improve
results of automated pathway curation for mTOR
pathway by using different training datasets and
learning algorithms. We show that the choice of
event extraction classifiers increases F-score by up
to 20% compared to state-of-the-art system. Our
results also show that within limits the choice of
training data has significantly less impact on re-
sults than the choice of classifier. Our results
also suggest that additional research is necessary
to solve the problem of APC.

2 Automatic Pathway Curation

We constructed an automatic pathway curation
system that take as input scientific articles in PDF
format and transforms them into SBML encoded,
annotated pathway maps. The pipeline has multi-
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ple steps.

1. PDFs are translated into pure text files using
the cermine! tool.

2. Preprocessing provides tokenization, POS
tagging, dependency and syntax parsing.

3. An event extraction system extracts the men-
tions of entities (genes, proteins etc), reac-
tions (e.g. phosphorylation) and their argu-
ments (theme, cause, product).

4. A converter constructs pathways from the in-
formation provided by the event extraction
system.

5. An annotation system maps extracted entities
and events to Entrez gene identifiers and SBO
terms.

The following sections detail steps 3 to 5.

2.1 Event Extraction

We used the TURKU Event Extraction System
(TEES) for event extraction (Bjorne et al., 2010).
This system is one of the most successful BioNLP
systems. It has not only won 1st place in BioNLP
competitions but was also the only one NLP sys-
tem that participated in all BioNLP-ST 2013 tasks
(Bjorne et al., 2012). The system combines var-
ious NLP techniques to extract information from
text. TEES workflow consists of four steps:

1. Trigger Detection - detection of named enti-
ties and event triggers in a given sentence to
construct nodes of the event graph.

2. Edge detection - construction of complex
events linking few triggers to create event
graph. Output produced during this step is
often a directed, typed edge connecting two
entity nodes.

3. Unmerging - event nodes from merged event
graph are duplicated in order to separate ar-
guments into valid combinations. This step
is needed for evaluation of final results in
BioNLP Shared Task standard.

4. Modifiers detection - final component that
defines additional attributes for events such
as speculation and negation modifiers.

By default TEES trains a different instance of
multiclass Support Vector Machines (SVM) for
each step. Recent versions of TEES (Bjorne and

'http://cermine.ceon.pl/index.htm]
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Salakoski, 2015) allow to easily exchange the
SVM classifiers with other supervised classifica-
tion algorithms. For example, all scikit-learn mul-
ticlass, supervised learning algorithms that sup-
port sparse feature matrices can be applied (Pe-
dregosa et al., 2011). Thanks to this it is possi-
ble to test different algorithms for event extraction
task and automatic pathway extraction. For this
paper, we exchanges classifiers in all steps 1-4s
as described in Section 3. The output of TEES is
a standoff formatted representation of entities and
events.

2.2 Conversion Standoff to SBML pathways

In principle events and entities extracted by TEES
correspond to biological species and reactions.
We translate the NLP representation into SBML
— the standard, XML-based markup language
for representing biological models (Hucka et al.,
2003). SBML essentially encodes models us-
ing biological players called sbml:species?.
sbml:species can participate in interac-
tions, called sbml:reaction. Species par-
ticipate in interaction as sbml:reactant,
sbml:product and sbml:modifier. The
basic idea being that some quantity of reactant is
consumed to produce a product. Reactions are
influenced by modifiers. The mapping algorithm
is adopted from and described in more detail in
Spranger et al. (2015).

2.3 SBO/GO, Entrez Gene Annotations

The SBML encoded, automatically extracted path-
way is further annotated using Systems Biology
Ontology (SBO) (Le Novere, 2006) and Gene On-
tology (GO) terms. SBO also provides a class hi-
erarchy for reaction types. For instance, the NLP
system identify phosphorylation reactions, which
are a subclass of conversion reactions. All reac-
tions in the data are automatically annotated with
SBO/GO term (coverage 100%) using an annota-
tion scheme detailed in (Spranger et al., 2015).
Species (e.g. proteins, genes) were annotated
using the gene/protein named entity recognition
and normalization software GNAT (Hakenberg
et al., 2011) - a publicly available gene/protein
normalization tool. GNAT returns a set of En-
trez Gene identifiers (Maglott et al., 2005) for each
input string. Species were annotated using all
returned Entrez Gene identifiers for a particular

>We refer to SBML vocabulary using the prefix “sbml”.



species (organism human). We call the set of En-
trez Gene identifiers returned by GNAT for each
species Entrez Gene signature.

3 C(lassifiers for Event Extraction

In this paper we evaluate classifiers for event ex-
traction (Section 2.1) and their impact on the over-
all performance of the automatic pathway extrac-
tion system. We compare the following classifiers:

e Support Vector Machines (SVM) is the de-
fault TEES classifier (Joachims, 1999). It
was optimized for linear classification and its
performance scales linearly with the number
of training examples.

e Decision Tree (DT) creates a model that can
predict the target value by learning simple de-
cision rules inferred from the training data.
Compared to the other techniques they are
relatively fast, cost of using tree is logarith-
mic in the number of examples. We use Gini
impurity criterion to evaluate quality of the
split.

o Random Forest (RF) classifiers fit a number
of ensembled decision tree classifiers, each
built from a bootstrap sample of a training
set. The best split of node is chosen only from
a random subset of the features, not all fea-
tures. Final classifiers are combined by av-
eraging their probabilistic prediction. Single
tree have a higher bias but, due to averaging
variance of the random forest as a whole de-
creases.

e Multinomial Naive Bayes (MNNB) This is
an implementation of the naive Bayes algo-
rithm for multinomial data which is one of
the classic variants used in classification of
discrete features (e.g. text classification).
Additive smoothing parameter was set to 1.

e Multi-layer Perceptron (MLP) MLP is a
feedforward neural network model. We use
hidden layer with 100 neurons and rectified
linear unit activation function. We optimize
for logarithmic loss using stochastic gradient
descent. Learning rate is constant and equal
to 0.001.

For DT, RF, MNNB and MLP we use imple-
mentations from scikit-learn Python library (Pe-
dregosa et al., 2011).
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Item ANN GEIll PC13
Documents | 60 908 260
Words 11960 205729 53811
Entities 1921 11625 7855
Events 1284 10310 5992
Modifiers 71 1382 317

Renaming | 101 571 455

Table 1: Corpora statistics

Reaction type ANN GE11 PC13
Acetylation 0 0 38
Activation 0 0 359
Binding 211 988 606
Catalysis 87 0 0
Conversion 0 0 124
Deacetylation 0 0 1
Degradation 0 0 49
Demethylation 0 0 4
Dephosphorylation 14 0 22
Deubiquitination 0 0 3
Dissociation 55 0 54
Gene_expression 46 2265 384
Hydroxylation 0 0 1
Inactivation 0 0 76
Localization 27 281 96
Methylation 0 0 7
Negative_regulation 194 1309 801
Pathway 0 0 443
Phosphorylation 252 192 406
Positive_regulation 235 3385 1506
Protein_catabolism 18 110 0
Regulation 132 1113 707
Transcription 8 667 74
Translation 1 0 11
Transport 0 0 189
Ubiquitination 4 0 31

Table 2: Reaction types annotated for training data
sets.

4 Datasets

4.1 Training Datasets

In order to quantify the impact of training data, we
test the following three training sets.

e ANN - consists of 60 abstracts of scien-
tific papers from Pubmed database related to
the mTORpathway map. This dataset was
human-annotated for NLP system training
(Ohta et al., 2011, Corpus annotations (c)
GENIA Project) .



e GE11 consists of 908 abstracts and full texts
of scientific papers used in BioNLP ST 2011
GENIA Event Extraction task as training data
(Kim et al., 2012).

e PC13 consists of 260 abstracts of scientific
papers used in BioNLP ST 2013 Pathway
Curation task as training data (Ohta et al.,
2013). The task goal was to evaluate the ap-
plicability of event extraction systems to sup-
port the automatic curation and evaluation of
biomolecular pathway models.

The overall corpora statistics are summarized in
Table 1. GE11 and PC13 have the largest number
of annotated events. ANN is much smaller in com-
parison. Also, the distribution of event types dif-
fers between data sets (Table 2). GE11 uses more
general terms (Binding, Regulation) compared to
PC13 where some specific events appear only a
few times (Deacetylation, Hydroxylation, Methy-
lation).

We train classifiers on four combinations of
the three training datasets: 1) standalone GE11;
2) GE11+ANN - combined GE11 and ANN; 3)
combined GE11+PCI13+ANN - GEl11, PC13 and
ANN; 4) PC13+ANN - combined PC13 and ANN.
For instance, DT+GE11 refers to a decision tree
classifier trained on GE11.

We use GE11-Devel BioNLP ST2011 dataset
for hyperparameter optimization of all classifiers.

4.2 Test Data

Performance of classifiers is tested on the mTOR
pathway map (Caron et al., 2010). The map was
constructed by expert human curators using 522
full text papers from the PubMed database. The
experts curated a single large map using CellDe-
signer (Funahashi et al., 2008) - a software for
modeling and executing mechanistic models of
pathways. CellDesigner represents information
using a heavily customized XML-based SBML
format (Hucka et al., 2003).

Target Human expert data We translate the
curator map into standard SBML and further en-
rich the information using SBO/GO and Entrez
Gene annotations. For SBO/GO, we use existing
annotations provided by curators and extend them
by automatic annotations deduced from reactants
and products of reactions. For example, if a phos-
phoryl group is added in a reaction, it is annotated
using the SBO term for phosphorylation. Each re-
action may be annotated with multiple SBO/GO
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terms. Also we annotate the curated map with En-
trez gene identifiers (similar to the automatic ex-
traction data). We call this pathway TARGET.

Testing classifiers The 522 full text papers —
used by human curators for the construction of the
mTOR pathway — are used for evaluating the dif-
ferent text mining classifiers. For this, we plug
in (trained) classifiers into the automatic pathway
extraction pipeline which performs preprocessing,
event extraction, conversion to SBML and anno-
tation (see also Section 2). The output of this is
an annotated SBML file that is subsequently com-
pared to human-curated SBML-encoded pathway
data.

5 Evaluation

Evaluation of the classifiers (and the system as
a whole) is performed by comparing the auto-
matically extracted pathway with the hand-curated
pathway. Spranger et al. (2016) propose a num-
ber of graph overlap algorithms for quantifying the
difference and similarity of two pathways. Here
we employ the same measures. The following
summarizes the strategies.

Species In order to decide whether species in
two pathways are the same, we use the name of
the identifiers and their Entrez gene signatures.

nmeq: Two species are equal if their names are
exactly equal. We remove certain prefixes
from the names (e.g. phosphorylated).

appeq: Two species are equal if their names
are approximately equal. Two names are
approximately equal iff their Levenshtein-
based string distance is above 90 (Leven-
shtein, 1966)

enteq: Two species are equal if their entrez gene
identifiers are exactly equal. This basically
translates to the two species bgbiol:is identi-
fier sets being exactly the same (order does
not matter).

entov: Two species are equal if their entrez gene
identifiers sets overlap. This basically trans-
lates to the two species bgbiol:is identifier

sets overlapping.
we: Human curated data contains complex

species that contain other species as con-
stituents (species that consist of various pro-
teins etc). wc allows species to match with
constituents of complexes.

Reaction match based on their SBO/GO anno-
tations



sboeq: Two reactions are equal iff their signa-
tures are exactly the same. That is, the whole
set of SBO/GO terms of one reaction is the
same as of the other reaction.

sboov: Two reactions are equal, iff their signa-
tures overlap. That is, the intersection of the
set of SBO/GO terms of one reaction is with
the set of SBO/GO terms of the other reaction
is not empty.

sobisa: Two reactions are equal, iff there is at
least one SBO/GO term in each signature that
relate in a is_a relationship in the SBO re-
action type hierarchy. For instance, if there
is a phosphorylation reaction and a conver-
sion reaction, then sboisa will match because
phosphorylation is a subclass of conversion
according to the SBO type hierarchy.

Edges only match if their labels are strictly
equal. So if an edge is a reactant, then it has to
be a reactant in the other pathway. Same holds for
products and modifiers.

Subgraph matching strategies are combina-
tions of matching strategies for species, reactions
(and for edges which is always the same). For in-
stance, the matching strategy nmegq, sboeq is the
most strict and requires that species names are ex-
actly equal and that SBO/GO signatures of reac-
tions are exactly equal. The matching strategy
appeq/enteq/wc, sboisa is the most loose strategy.
In this strategy, two species match if their names
are approximately equal or if their Entrez gene
identifiers overlap or if any of this applies to one of
the constituents of the two species. Two reactions
match if any of their SBO/GO terms are in a is_a
relationship. We compare a total of 24 matching
strategies.

Subgraph overlap is computed as follows.
For each subgraph in the extracted pathway we
search for subgraphs in the human curated data
that match according to some subgraph matching
strategy. We use micro-averaged F-score, preci-
sion and recall (Sokolova and Lapalme, 2009) for
quantifying the retrieval results. F-score is used
to quantify the overlap of species, reactions and
edges. We then macro-average these results to get
a total F-score quantifying performance of the ex-
traction system as a whole.

6 Results

Some classifiers take long to train, so we only have
partial results for MLP. However, all other classi-
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fiers (DT, MNNB, RF, SVM) finished training on
all selected combinations of training data sets.

Since we tested 24 subgraph overlap measures
with 18 classifiers, we receive a lot of data that
cannot be discussed in detail in this paper. Here,
we concentrate on general trends in the data. Code
and datasets are published as appropriate?.

6.1 Extraction Results: Species, Reactions,
Subgraphs

Generally speaking the extracted pathways con-
tain two order of magnitudes more species reac-
tions, and edges than the TARGET pathway (see
Table 3 for all results). This is normal since the
extracted pathways consist of all combinations of
entity and event mentions in text. The same enti-
ties may occur more often in the text then they are
referenced in the actual pathway.

Our results show that extraction classifiers per-
form inconsistent with respect to the identification
of compartments. While some classifiers retrieve
a lot of compartment information (via localization
events), others (especially MNNB trained on ANN
and PC13 datasets) do not extract any compart-
ments. MNNB with our parameter choice might
not be able to learn many different event types so
it skips least frequent reaction types (one of which
is localization event).

Measuring how many subgraphs there are per
pathway, we can see that more than half of all
species extracted by classifiers are isolated and not
connected to any reactions. Similarly we see many
(small) subgraphs being extracted by the classi-
fiers, whereas TARGET consists of essentially one
large connected graph (with a few modeling mis-
takes).

6.2 General Trends Subgraphs overlap

Let us first concentrate on overall performance
especially with respect to previous results. For
this we compute the best classifiers and their
score for different matching strategies. For each
matching strategy, we evaluate all classifiers and
then choose the best performing one and com-
pare it with the results reported in Spranger et al.
(2016)/Spr16. Table 4 shows that the best classi-
fiers outperform Spr16 in all cases and for some
subgraph overlap measures by 10 points.

If we analyze the classifiers from this paper in
more detail, results (Figure 1, Table 5) show that

*https://github.com/sbnlp/
2017BioNLPEvaluation/
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DT+GE11 282361 92899 201 195531 89001 91895 14635 118162 187871
DT+GE11+ANN 284187 95096 188 212490 100529 93886 18075 115427 184542
DT+GE11+PC13+ANN 289504 94496 208 207447 94044 93559 19844 118281 188013
DT+PC13+ANN 279647 82977 20 188325 86802 82469 19054 123309 184698
MLP+GE11+ANN 278510 88502 230 193150 88655 87636 16859 114541 182456
MNNB+GEI11 264413 69744 202 137828 61448 69250 7130 139402 198972
MNNB+GE11+ANN 245680 45690 0 86771 40102 45676 993 166712 206606
MNNB+GE11+PC13+ANN 269008 68926 0 142712 70292 68894 3526 151495 203903
MNNB+PC13+ANN 287314 76932 0 183029 94693 76925 11411 154210 199844
RF+GE11 227613 29573 9 50444 20786 29133 525 178233 206874
RF+GE11+ANN 261414 67974 347 130556 57195 67271 6090 136180 199157
RF+GE11+PC13+ANN 203314 32075 1 58083 25312 31704 1067 146342 177371
RF+PC13+ANN 236220 37018 0 68559 30493 36909 1157 168927 204771
SVM+GEI1 288421 98938 451 200595 89769 97791 13035 109060 191175
SVM+GEI11+ANN 262327 81207 388 169841 73033 80203 16605 109862 177023
SVM+GE11+PC13+ANN 275303 85435 312 179661 77587 84549 17525 114941 184481
SVM+PC13+ANN 275256 82119 59 177651 79239 81512 16900 120729 186122
TARGET 2242 771 7 2457 1044 892 521 15 4

Table 3: General statistics of all datasets. Number of extracted species, reactions and compartments.
Total number of edges and of product, reactant and modifier edges. The table also shows the number of
isolated species and the number of unconnected subgraphs for each pathway. The human curated mTOR
pathway TARGET numbers are shown in the last row.

this  Sprl6

f-score f-score

nmeq, sboeq 11.7 7.6
nmeq, sboov 15.3 11.4
nmeq, sboisa 18.1 13.6
appeq, sboeq 12.5 8.1
appeq, sboov 16.3 12.0
appeq, sboisa 194 14.5
appeq/enteq, sboeq 16.9 11.9
appeg/enteq, sboov 21.7 17.1
appeq/enteq, sboisa 26.0 20.4
appeg/entov, sboeq 36.2 26.9
appeq/entov, sboov 41.9 34.7
appeg/entov, sboisa 48.6 39.5
nmeq/wc, sboeq 23.3 15.0
nmegq/wc, sboov 26.0 19.6
nmeg/wc, sboisa 29.1 22.0
appeq/wc, sboeq 24.6 15.7
appeq/wc, sboov 274 20.4
appeq/wc, sboisa 30.9 23.1
appeq/enteq/wc, sboeq 39.7 29.1
appeq/enteq/wc, sboov 45.3 37.2
appeqg/enteq/wc, sboisa 52.0 42.2
appeg/entov/wc, sboeq 39.7 29.1
appeg/entov/wc, sboov 45.3 37.2
appeq/entov/wc, sboisa 52.0 42.2

Table 4: This table compares macro F-score per-
formance of the classifiers discussed in this paper
with results reported in Spranger et al. (2016)

for the strictest matching strategy (nmeq, sboeq)
the best classifiers reach a macro F-score of 12
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Figure 1: Best performing classifier f-score, pre-
cision and recall for each subgraph overlap func-
tions. The x-axis are the different subgraph over-
lap function. The y-axis shows precision, recall,
f-score of the highest classifier for each subgraph
overlap function. Notice that these can be differ-
ent classifiers for each subgraph overlap function
(see Table 5 for all results).

(with 14 precision, 13 recall scores). For the loos-
est strategy (appeg/entov/wc, sboisa) this goes up
to F-score 52 (47 precision, 66 recall). These re-
sults show that when it comes to exact extraction
the classifiers fail badly, whereas with more looser
overlap strategies, performance becomes reason-
able and there is some overlap between the ex-
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tracted and the human-curated data. Of course,
this also entails that the automatically extracted
pathway does not completely capture what hu-
mans are constructing from the text.

Generally speaking overlap strategies that are
loose with respect to constituents of complex
species (wc) outperform their non wc counterparts.
For instance, nmeq/wc, sboeq performs much bet-
ter than nmegq, sboeq. This shows that complex
species are important for the mTOR pathway but
their extraction is not very detailed - which is why
the overlap matching strategy has to be lenient
with respect to complex species constituents. The
increase in F-score for we matching strategies is
primarily driven by an increase in recall score. For
instance, the difference between nmegq, sboeq and
nmeg/we, sboeq is more than 20 points, whereas
precision does not improve that much. The rea-
sons for that is that the same subgraphs in the ex-
tracted pathway overlap with more subgraphs in
TARGET. So it is not the case that other subgraphs
in the extracted pathway overlap with TARGET.

Results also show that recall is in general much
higher than precision for looser strategies. For
instance, wc strategies (right hand side of Figure
1) double the recall score w.r.t to their precision
scores. This also shows that in principle loosen-
ing matching strategies impacts mostly recall as
the same subgraphs in the extracted data overlap
with the human curated data.

6.3 Classifier Performance in Detail

The bottom figure in Figure 2 shows the best clas-
sifiers in terms of precision, recall and F-score. We
measured how often a classifier is the best classi-
fier (for each of the 24 subgraph overlap strate-
gies). It is clear that overall Random Forest classi-
fier (RF) performance is the best. For all 24 match-
ing strategies it is a Random Forest classifier that
is better than any other competitor with RF trained
on PC13 and ANN being the most frequent best
classifier overall. Second place is Random For-
est trained simply on GE11 (the largest dataset in
terms of entities and events). No other classifiers
(SVM, MLP, MNNB, DT) outperform RF. Train-
ing on all datasets (RF+GE11+PC13+ANN) does
not seem to increase success significantly. Perfor-
mance across different RF classifiers is on par and
good (see Table 5)

Results in the top figure of Figure 2 show
that RF has the best precision performance.
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Figure 2: Histogram of best classifiers. This his-
togram is generated by counting how often a clas-
sifier is the best for a particular subgraph matching
strategy.

0-

RF+PCI13+ANN is the most frequent best
classifier w.r.t precision. RF+GE11 and
RF+GE11+PC13+ANN also performing compa-
rably. Compared to recall this means that RF wins
F-score because they are best in precision.

No RF classifier performs best in recall. Results
show that MLP, DT and SVM all perform well for
certain subgraph overlap strategies with SVM be-
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Figure 3: Statistics of classifier performance
across all matching strategies. X-axis - classifiers.
Y-axis - macro precision top, macro recall middle
and macro f-score bottom (with 100 being perfect
score).

ing most often the best classifier, followed by var-
ious DT-based classifiers and MLP.

Figure 3 gives results for all classifiers across
all matching strategies. Looser strategies give the
max and strict matching strategies the min data
points. We can see that performance is primar-
ily driven by the choice of classifier as the F-score
mostly varies with the type of classifier used (even
though there are a few outliers). Situation is a bit
more varied for precision and recall. Interestingly
choice of dataset seems to have less impact. Gen-
erally speaking MNNB are the least successful.
RF clearly dominate precision on average but are
close enough to DT and SVM on recall.
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7 Conclusion

This paper continues the current trend of extend-
ing NLP systems for APC and building more com-
plete systems that allow evaluation with respect
to some external standard - here the hand curated
mTOR pathway.

We measured the impact of different classifiers
on retrieval performance and showed that certain
classifiers have the potential to increase retrieval
performance. Especially Random Forest classi-
fiers perform much better on mTOR than previ-
ously tried Support Vector Machines. On the other
hand, the training data choice seems to have lit-
tle impact (at least for the tested ANN, GE11 and
PC13 training datasets).

Spranger et al. (2016) argue that not all of the
problems of APC can be overcome by using more
training data on event extraction systems. They ar-
gue that additions such as complex species recog-
nition, co-reference resolution and pathway con-
struction are needed to ultimately solve the prob-
lem posed by APC. This certainly remains true and
is not directly questioned by results in this paper.
The system described here does not automatically
compose single pathway maps from the extracted
data. Nevertheless, our results suggest that a lot of
progress can be made by improving on the event
extraction part of the pipeline.

This paper focuses on evaluating current ma-
chine learning techniques for event extraction. We
are currently in the process of evaluating other sys-
tems including rule-based ones.
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