@inproceedings{chandu-etal-2017-tackling,
    title = "Tackling Biomedical Text Summarization: {OAQA} at {B}io{ASQ} 5{B}",
    author = "Chandu, Khyathi  and
      Naik, Aakanksha  and
      Chandrasekar, Aditya  and
      Yang, Zi  and
      Gupta, Niloy  and
      Nyberg, Eric",
    editor = "Cohen, Kevin Bretonnel  and
      Demner-Fushman, Dina  and
      Ananiadou, Sophia  and
      Tsujii, Junichi",
    booktitle = "Proceedings of the 16th {B}io{NLP} Workshop",
    month = aug,
    year = "2017",
    address = "Vancouver, Canada,",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W17-2307/",
    doi = "10.18653/v1/W17-2307",
    pages = "58--66",
    abstract = "In this paper, we describe our participation in phase B of task 5b of the fifth edition of the annual BioASQ challenge, which includes answering factoid, list, yes-no and summary questions from biomedical data. We describe our techniques with an emphasis on ideal answer generation, where the goal is to produce a relevant, precise, non-redundant, query-oriented summary from multiple relevant documents. We make use of extractive summarization techniques to address this task and experiment with different biomedical ontologies and various algorithms including agglomerative clustering, Maximum Marginal Relevance (MMR) and sentence compression. We propose a novel word embedding based tf-idf similarity metric and a soft positional constraint which improve our system performance. We evaluate our techniques on test batch 4 from the fourth edition of the challenge. Our best system achieves a ROUGE-2 score of 0.6534 and ROUGE-SU4 score of 0.6536."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chandu-etal-2017-tackling">
    <titleInfo>
        <title>Tackling Biomedical Text Summarization: OAQA at BioASQ 5B</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Khyathi</namePart>
        <namePart type="family">Chandu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Aakanksha</namePart>
        <namePart type="family">Naik</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Aditya</namePart>
        <namePart type="family">Chandrasekar</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Zi</namePart>
        <namePart type="family">Yang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Niloy</namePart>
        <namePart type="family">Gupta</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Eric</namePart>
        <namePart type="family">Nyberg</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 16th BioNLP Workshop</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Kevin</namePart>
            <namePart type="given">Bretonnel</namePart>
            <namePart type="family">Cohen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Dina</namePart>
            <namePart type="family">Demner-Fushman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sophia</namePart>
            <namePart type="family">Ananiadou</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Junichi</namePart>
            <namePart type="family">Tsujii</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, Canada,</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we describe our participation in phase B of task 5b of the fifth edition of the annual BioASQ challenge, which includes answering factoid, list, yes-no and summary questions from biomedical data. We describe our techniques with an emphasis on ideal answer generation, where the goal is to produce a relevant, precise, non-redundant, query-oriented summary from multiple relevant documents. We make use of extractive summarization techniques to address this task and experiment with different biomedical ontologies and various algorithms including agglomerative clustering, Maximum Marginal Relevance (MMR) and sentence compression. We propose a novel word embedding based tf-idf similarity metric and a soft positional constraint which improve our system performance. We evaluate our techniques on test batch 4 from the fourth edition of the challenge. Our best system achieves a ROUGE-2 score of 0.6534 and ROUGE-SU4 score of 0.6536.</abstract>
    <identifier type="citekey">chandu-etal-2017-tackling</identifier>
    <identifier type="doi">10.18653/v1/W17-2307</identifier>
    <location>
        <url>https://aclanthology.org/W17-2307/</url>
    </location>
    <part>
        <date>2017-08</date>
        <extent unit="page">
            <start>58</start>
            <end>66</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tackling Biomedical Text Summarization: OAQA at BioASQ 5B
%A Chandu, Khyathi
%A Naik, Aakanksha
%A Chandrasekar, Aditya
%A Yang, Zi
%A Gupta, Niloy
%A Nyberg, Eric
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 16th BioNLP Workshop
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada,
%F chandu-etal-2017-tackling
%X In this paper, we describe our participation in phase B of task 5b of the fifth edition of the annual BioASQ challenge, which includes answering factoid, list, yes-no and summary questions from biomedical data. We describe our techniques with an emphasis on ideal answer generation, where the goal is to produce a relevant, precise, non-redundant, query-oriented summary from multiple relevant documents. We make use of extractive summarization techniques to address this task and experiment with different biomedical ontologies and various algorithms including agglomerative clustering, Maximum Marginal Relevance (MMR) and sentence compression. We propose a novel word embedding based tf-idf similarity metric and a soft positional constraint which improve our system performance. We evaluate our techniques on test batch 4 from the fourth edition of the challenge. Our best system achieves a ROUGE-2 score of 0.6534 and ROUGE-SU4 score of 0.6536.
%R 10.18653/v1/W17-2307
%U https://aclanthology.org/W17-2307/
%U https://doi.org/10.18653/v1/W17-2307
%P 58-66
Markdown (Informal)
[Tackling Biomedical Text Summarization: OAQA at BioASQ 5B](https://aclanthology.org/W17-2307/) (Chandu et al., BioNLP 2017)
ACL