@inproceedings{ferre-etal-2017-representation,
title = "Representation of complex terms in a vector space structured by an ontology for a normalization task",
author = "Ferr{\'e}, Arnaud and
Zweigenbaum, Pierre and
N{\'e}dellec, Claire",
editor = "Cohen, Kevin Bretonnel and
Demner-Fushman, Dina and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "{B}io{NLP} 2017",
month = aug,
year = "2017",
address = "Vancouver, Canada,",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2312/",
doi = "10.18653/v1/W17-2312",
pages = "99--106",
abstract = "We propose in this paper a semi-supervised method for labeling terms of texts with concepts of a domain ontology. The method generates continuous vector representations of complex terms in a semantic space structured by the ontology. The proposed method relies on a distributional semantics approach, which generates initial vectors for each of the extracted terms. Then these vectors are embedded in the vector space constructed from the structure of the ontology. This embedding is carried out by training a linear model. Finally, we apply a distance calculation to determine the proximity between vectors of terms and vectors of concepts and thus to assign ontology labels to terms. We have evaluated the quality of these representations for a normalization task by using the concepts of an ontology as semantic labels. Normalization of terms is an important step to extract a part of the information containing in texts, but the vector space generated might find other applications. The performance of this method is comparable to that of the state of the art for this task of standardization, opening up encouraging prospects."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ferre-etal-2017-representation">
<titleInfo>
<title>Representation of complex terms in a vector space structured by an ontology for a normalization task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arnaud</namePart>
<namePart type="family">Ferré</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Zweigenbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Nédellec</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>BioNLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada,</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose in this paper a semi-supervised method for labeling terms of texts with concepts of a domain ontology. The method generates continuous vector representations of complex terms in a semantic space structured by the ontology. The proposed method relies on a distributional semantics approach, which generates initial vectors for each of the extracted terms. Then these vectors are embedded in the vector space constructed from the structure of the ontology. This embedding is carried out by training a linear model. Finally, we apply a distance calculation to determine the proximity between vectors of terms and vectors of concepts and thus to assign ontology labels to terms. We have evaluated the quality of these representations for a normalization task by using the concepts of an ontology as semantic labels. Normalization of terms is an important step to extract a part of the information containing in texts, but the vector space generated might find other applications. The performance of this method is comparable to that of the state of the art for this task of standardization, opening up encouraging prospects.</abstract>
<identifier type="citekey">ferre-etal-2017-representation</identifier>
<identifier type="doi">10.18653/v1/W17-2312</identifier>
<location>
<url>https://aclanthology.org/W17-2312/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>99</start>
<end>106</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Representation of complex terms in a vector space structured by an ontology for a normalization task
%A Ferré, Arnaud
%A Zweigenbaum, Pierre
%A Nédellec, Claire
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S BioNLP 2017
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada,
%F ferre-etal-2017-representation
%X We propose in this paper a semi-supervised method for labeling terms of texts with concepts of a domain ontology. The method generates continuous vector representations of complex terms in a semantic space structured by the ontology. The proposed method relies on a distributional semantics approach, which generates initial vectors for each of the extracted terms. Then these vectors are embedded in the vector space constructed from the structure of the ontology. This embedding is carried out by training a linear model. Finally, we apply a distance calculation to determine the proximity between vectors of terms and vectors of concepts and thus to assign ontology labels to terms. We have evaluated the quality of these representations for a normalization task by using the concepts of an ontology as semantic labels. Normalization of terms is an important step to extract a part of the information containing in texts, but the vector space generated might find other applications. The performance of this method is comparable to that of the state of the art for this task of standardization, opening up encouraging prospects.
%R 10.18653/v1/W17-2312
%U https://aclanthology.org/W17-2312/
%U https://doi.org/10.18653/v1/W17-2312
%P 99-106
Markdown (Informal)
[Representation of complex terms in a vector space structured by an ontology for a normalization task](https://aclanthology.org/W17-2312/) (Ferré et al., BioNLP 2017)
ACL