@inproceedings{miller-etal-2017-unsupervised,
title = "Unsupervised Domain Adaptation for Clinical Negation Detection",
author = "Miller, Timothy and
Bethard, Steven and
Amiri, Hadi and
Savova, Guergana",
editor = "Cohen, Kevin Bretonnel and
Demner-Fushman, Dina and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "{B}io{NLP} 2017",
month = aug,
year = "2017",
address = "Vancouver, Canada,",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2320/",
doi = "10.18653/v1/W17-2320",
pages = "165--170",
abstract = "Detecting negated concepts in clinical texts is an important part of NLP information extraction systems. However, generalizability of negation systems is lacking, as cross-domain experiments suffer dramatic performance losses. We examine the performance of multiple unsupervised domain adaptation algorithms on clinical negation detection, finding only modest gains that fall well short of in-domain performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="miller-etal-2017-unsupervised">
<titleInfo>
<title>Unsupervised Domain Adaptation for Clinical Negation Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hadi</namePart>
<namePart type="family">Amiri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guergana</namePart>
<namePart type="family">Savova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>BioNLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada,</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Detecting negated concepts in clinical texts is an important part of NLP information extraction systems. However, generalizability of negation systems is lacking, as cross-domain experiments suffer dramatic performance losses. We examine the performance of multiple unsupervised domain adaptation algorithms on clinical negation detection, finding only modest gains that fall well short of in-domain performance.</abstract>
<identifier type="citekey">miller-etal-2017-unsupervised</identifier>
<identifier type="doi">10.18653/v1/W17-2320</identifier>
<location>
<url>https://aclanthology.org/W17-2320/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>165</start>
<end>170</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Domain Adaptation for Clinical Negation Detection
%A Miller, Timothy
%A Bethard, Steven
%A Amiri, Hadi
%A Savova, Guergana
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S BioNLP 2017
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada,
%F miller-etal-2017-unsupervised
%X Detecting negated concepts in clinical texts is an important part of NLP information extraction systems. However, generalizability of negation systems is lacking, as cross-domain experiments suffer dramatic performance losses. We examine the performance of multiple unsupervised domain adaptation algorithms on clinical negation detection, finding only modest gains that fall well short of in-domain performance.
%R 10.18653/v1/W17-2320
%U https://aclanthology.org/W17-2320/
%U https://doi.org/10.18653/v1/W17-2320
%P 165-170
Markdown (Informal)
[Unsupervised Domain Adaptation for Clinical Negation Detection](https://aclanthology.org/W17-2320/) (Miller et al., BioNLP 2017)
ACL