@inproceedings{mowery-etal-2017-investigating,
title = "Investigating the Documentation of Electronic Cigarette Use in the Veteran Affairs Electronic Health Record: A Pilot Study",
author = "Mowery, Danielle and
South, Brett and
Patterson, Olga and
Zhu, Shu-Hong and
Conway, Mike",
editor = "Cohen, Kevin Bretonnel and
Demner-Fushman, Dina and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "{B}io{NLP} 2017",
month = aug,
year = "2017",
address = "Vancouver, Canada,",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2335",
doi = "10.18653/v1/W17-2335",
pages = "282--286",
abstract = "In this paper, we present pilot work on characterising the documentation of electronic cigarettes (e-cigarettes) in the United States Veterans Administration Electronic Health Record. The Veterans Health Administration is the largest health care system in the United States with 1,233 health care facilities nationwide, serving 8.9 million veterans per year. We identified a random sample of 2000 Veterans Administration patients, coded as current tobacco users, from 2008 to 2014. Using simple keyword matching techniques combined with qualitative analysis, we investigated the prevalence and distribution of e-cigarette terms in these clinical notes, discovering that for current smokers, 11.9{\%} of patient records contain an e-cigarette related term.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mowery-etal-2017-investigating">
<titleInfo>
<title>Investigating the Documentation of Electronic Cigarette Use in the Veteran Affairs Electronic Health Record: A Pilot Study</title>
</titleInfo>
<name type="personal">
<namePart type="given">Danielle</namePart>
<namePart type="family">Mowery</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brett</namePart>
<namePart type="family">South</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Patterson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shu-Hong</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Conway</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>BioNLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada,</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we present pilot work on characterising the documentation of electronic cigarettes (e-cigarettes) in the United States Veterans Administration Electronic Health Record. The Veterans Health Administration is the largest health care system in the United States with 1,233 health care facilities nationwide, serving 8.9 million veterans per year. We identified a random sample of 2000 Veterans Administration patients, coded as current tobacco users, from 2008 to 2014. Using simple keyword matching techniques combined with qualitative analysis, we investigated the prevalence and distribution of e-cigarette terms in these clinical notes, discovering that for current smokers, 11.9% of patient records contain an e-cigarette related term.</abstract>
<identifier type="citekey">mowery-etal-2017-investigating</identifier>
<identifier type="doi">10.18653/v1/W17-2335</identifier>
<location>
<url>https://aclanthology.org/W17-2335</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>282</start>
<end>286</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Investigating the Documentation of Electronic Cigarette Use in the Veteran Affairs Electronic Health Record: A Pilot Study
%A Mowery, Danielle
%A South, Brett
%A Patterson, Olga
%A Zhu, Shu-Hong
%A Conway, Mike
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S BioNLP 2017
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada,
%F mowery-etal-2017-investigating
%X In this paper, we present pilot work on characterising the documentation of electronic cigarettes (e-cigarettes) in the United States Veterans Administration Electronic Health Record. The Veterans Health Administration is the largest health care system in the United States with 1,233 health care facilities nationwide, serving 8.9 million veterans per year. We identified a random sample of 2000 Veterans Administration patients, coded as current tobacco users, from 2008 to 2014. Using simple keyword matching techniques combined with qualitative analysis, we investigated the prevalence and distribution of e-cigarette terms in these clinical notes, discovering that for current smokers, 11.9% of patient records contain an e-cigarette related term.
%R 10.18653/v1/W17-2335
%U https://aclanthology.org/W17-2335
%U https://doi.org/10.18653/v1/W17-2335
%P 282-286
Markdown (Informal)
[Investigating the Documentation of Electronic Cigarette Use in the Veteran Affairs Electronic Health Record: A Pilot Study](https://aclanthology.org/W17-2335) (Mowery et al., BioNLP 2017)
ACL