@inproceedings{trost-klakow-2017-parameter,
title = "Parameter Free Hierarchical Graph-Based Clustering for Analyzing Continuous Word Embeddings",
author = "Trost, Thomas Alexander and
Klakow, Dietrich",
editor = "Riedl, Martin and
Somasundaran, Swapna and
Glava{\v{s}}, Goran and
Hovy, Eduard",
booktitle = "Proceedings of {T}ext{G}raphs-11: the Workshop on Graph-based Methods for Natural Language Processing",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2404",
doi = "10.18653/v1/W17-2404",
pages = "30--38",
abstract = "Word embeddings are high-dimensional vector representations of words and are thus difficult to interpret. In order to deal with this, we introduce an unsupervised parameter free method for creating a hierarchical graphical clustering of the full ensemble of word vectors and show that this structure is a geometrically meaningful representation of the original relations between the words. This newly obtained representation can be used for better understanding and thus improving the embedding algorithm and exhibits semantic meaning, so it can also be utilized in a variety of language processing tasks like categorization or measuring similarity.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="trost-klakow-2017-parameter">
<titleInfo>
<title>Parameter Free Hierarchical Graph-Based Clustering for Analyzing Continuous Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="given">Alexander</namePart>
<namePart type="family">Trost</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dietrich</namePart>
<namePart type="family">Klakow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of TextGraphs-11: the Workshop on Graph-based Methods for Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Riedl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapna</namePart>
<namePart type="family">Somasundaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word embeddings are high-dimensional vector representations of words and are thus difficult to interpret. In order to deal with this, we introduce an unsupervised parameter free method for creating a hierarchical graphical clustering of the full ensemble of word vectors and show that this structure is a geometrically meaningful representation of the original relations between the words. This newly obtained representation can be used for better understanding and thus improving the embedding algorithm and exhibits semantic meaning, so it can also be utilized in a variety of language processing tasks like categorization or measuring similarity.</abstract>
<identifier type="citekey">trost-klakow-2017-parameter</identifier>
<identifier type="doi">10.18653/v1/W17-2404</identifier>
<location>
<url>https://aclanthology.org/W17-2404</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>30</start>
<end>38</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Parameter Free Hierarchical Graph-Based Clustering for Analyzing Continuous Word Embeddings
%A Trost, Thomas Alexander
%A Klakow, Dietrich
%Y Riedl, Martin
%Y Somasundaran, Swapna
%Y Glavaš, Goran
%Y Hovy, Eduard
%S Proceedings of TextGraphs-11: the Workshop on Graph-based Methods for Natural Language Processing
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F trost-klakow-2017-parameter
%X Word embeddings are high-dimensional vector representations of words and are thus difficult to interpret. In order to deal with this, we introduce an unsupervised parameter free method for creating a hierarchical graphical clustering of the full ensemble of word vectors and show that this structure is a geometrically meaningful representation of the original relations between the words. This newly obtained representation can be used for better understanding and thus improving the embedding algorithm and exhibits semantic meaning, so it can also be utilized in a variety of language processing tasks like categorization or measuring similarity.
%R 10.18653/v1/W17-2404
%U https://aclanthology.org/W17-2404
%U https://doi.org/10.18653/v1/W17-2404
%P 30-38
Markdown (Informal)
[Parameter Free Hierarchical Graph-Based Clustering for Analyzing Continuous Word Embeddings](https://aclanthology.org/W17-2404) (Trost & Klakow, TextGraphs 2017)
ACL