@inproceedings{nayeem-chali-2017-extract,
title = "Extract with Order for Coherent Multi-Document Summarization",
author = "Nayeem, Mir Tafseer and
Chali, Yllias",
editor = "Riedl, Martin and
Somasundaran, Swapna and
Glava{\v{s}}, Goran and
Hovy, Eduard",
booktitle = "Proceedings of {T}ext{G}raphs-11: the Workshop on Graph-based Methods for Natural Language Processing",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2407/",
doi = "10.18653/v1/W17-2407",
pages = "51--56",
abstract = "In this work, we aim at developing an extractive summarizer in the multi-document setting. We implement a rank based sentence selection using continuous vector representations along with key-phrases. Furthermore, we propose a model to tackle summary coherence for increasing readability. We conduct experiments on the Document Understanding Conference (DUC) 2004 datasets using ROUGE toolkit. Our experiments demonstrate that the methods bring significant improvements over the state of the art methods in terms of informativity and coherence."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nayeem-chali-2017-extract">
<titleInfo>
<title>Extract with Order for Coherent Multi-Document Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mir</namePart>
<namePart type="given">Tafseer</namePart>
<namePart type="family">Nayeem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yllias</namePart>
<namePart type="family">Chali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of TextGraphs-11: the Workshop on Graph-based Methods for Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Riedl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapna</namePart>
<namePart type="family">Somasundaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we aim at developing an extractive summarizer in the multi-document setting. We implement a rank based sentence selection using continuous vector representations along with key-phrases. Furthermore, we propose a model to tackle summary coherence for increasing readability. We conduct experiments on the Document Understanding Conference (DUC) 2004 datasets using ROUGE toolkit. Our experiments demonstrate that the methods bring significant improvements over the state of the art methods in terms of informativity and coherence.</abstract>
<identifier type="citekey">nayeem-chali-2017-extract</identifier>
<identifier type="doi">10.18653/v1/W17-2407</identifier>
<location>
<url>https://aclanthology.org/W17-2407/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>51</start>
<end>56</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extract with Order for Coherent Multi-Document Summarization
%A Nayeem, Mir Tafseer
%A Chali, Yllias
%Y Riedl, Martin
%Y Somasundaran, Swapna
%Y Glavaš, Goran
%Y Hovy, Eduard
%S Proceedings of TextGraphs-11: the Workshop on Graph-based Methods for Natural Language Processing
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F nayeem-chali-2017-extract
%X In this work, we aim at developing an extractive summarizer in the multi-document setting. We implement a rank based sentence selection using continuous vector representations along with key-phrases. Furthermore, we propose a model to tackle summary coherence for increasing readability. We conduct experiments on the Document Understanding Conference (DUC) 2004 datasets using ROUGE toolkit. Our experiments demonstrate that the methods bring significant improvements over the state of the art methods in terms of informativity and coherence.
%R 10.18653/v1/W17-2407
%U https://aclanthology.org/W17-2407/
%U https://doi.org/10.18653/v1/W17-2407
%P 51-56
Markdown (Informal)
[Extract with Order for Coherent Multi-Document Summarization](https://aclanthology.org/W17-2407/) (Nayeem & Chali, TextGraphs 2017)
ACL