@inproceedings{ferrero-etal-2017-deep,
title = "Deep Investigation of Cross-Language Plagiarism Detection Methods",
author = "Ferrero, J{\'e}r{\'e}my and
Besacier, Laurent and
Schwab, Didier and
Agn{\`e}s, Fr{\'e}d{\'e}ric",
editor = "Sharoff, Serge and
Zweigenbaum, Pierre and
Rapp, Reinhard",
booktitle = "Proceedings of the 10th Workshop on Building and Using Comparable Corpora",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2502/",
doi = "10.18653/v1/W17-2502",
pages = "6--15",
abstract = "This paper is a deep investigation of cross-language plagiarism detection methods on a new recently introduced open dataset, which contains parallel and comparable collections of documents with multiple characteristics (different genres, languages and sizes of texts). We investigate cross-language plagiarism detection methods for 6 language pairs on 2 granularities of text units in order to draw robust conclusions on the best methods while deeply analyzing correlations across document styles and languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ferrero-etal-2017-deep">
<titleInfo>
<title>Deep Investigation of Cross-Language Plagiarism Detection Methods</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jérémy</namePart>
<namePart type="family">Ferrero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Besacier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Didier</namePart>
<namePart type="family">Schwab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Agnès</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Workshop on Building and Using Comparable Corpora</title>
</titleInfo>
<name type="personal">
<namePart type="given">Serge</namePart>
<namePart type="family">Sharoff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Zweigenbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reinhard</namePart>
<namePart type="family">Rapp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper is a deep investigation of cross-language plagiarism detection methods on a new recently introduced open dataset, which contains parallel and comparable collections of documents with multiple characteristics (different genres, languages and sizes of texts). We investigate cross-language plagiarism detection methods for 6 language pairs on 2 granularities of text units in order to draw robust conclusions on the best methods while deeply analyzing correlations across document styles and languages.</abstract>
<identifier type="citekey">ferrero-etal-2017-deep</identifier>
<identifier type="doi">10.18653/v1/W17-2502</identifier>
<location>
<url>https://aclanthology.org/W17-2502/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>6</start>
<end>15</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep Investigation of Cross-Language Plagiarism Detection Methods
%A Ferrero, Jérémy
%A Besacier, Laurent
%A Schwab, Didier
%A Agnès, Frédéric
%Y Sharoff, Serge
%Y Zweigenbaum, Pierre
%Y Rapp, Reinhard
%S Proceedings of the 10th Workshop on Building and Using Comparable Corpora
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F ferrero-etal-2017-deep
%X This paper is a deep investigation of cross-language plagiarism detection methods on a new recently introduced open dataset, which contains parallel and comparable collections of documents with multiple characteristics (different genres, languages and sizes of texts). We investigate cross-language plagiarism detection methods for 6 language pairs on 2 granularities of text units in order to draw robust conclusions on the best methods while deeply analyzing correlations across document styles and languages.
%R 10.18653/v1/W17-2502
%U https://aclanthology.org/W17-2502/
%U https://doi.org/10.18653/v1/W17-2502
%P 6-15
Markdown (Informal)
[Deep Investigation of Cross-Language Plagiarism Detection Methods](https://aclanthology.org/W17-2502/) (Ferrero et al., BUCC 2017)
ACL