@inproceedings{gulcehre-etal-2017-plan,
    title = "Plan, Attend, Generate: Character-Level Neural Machine Translation with Planning",
    author = "Gulcehre, Caglar  and
      Dutil, Francis  and
      Trischler, Adam  and
      Bengio, Yoshua",
    editor = "Blunsom, Phil  and
      Bordes, Antoine  and
      Cho, Kyunghyun  and
      Cohen, Shay  and
      Dyer, Chris  and
      Grefenstette, Edward  and
      Hermann, Karl Moritz  and
      Rimell, Laura  and
      Weston, Jason  and
      Yih, Scott",
    booktitle = "Proceedings of the 2nd Workshop on Representation Learning for {NLP}",
    month = aug,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W17-2627/",
    doi = "10.18653/v1/W17-2627",
    pages = "228--234",
    abstract = "We investigate the integration of a planning mechanism into an encoder-decoder architecture with attention. We develop a model that can plan ahead when it computes alignments between the source and target sequences not only for a single time-step but for the next k time-steps as well by constructing a matrix of proposed future alignments and a commitment vector that governs whether to follow or recompute the plan. This mechanism is inspired by strategic attentive reader and writer (STRAW) model, a recent neural architecture for planning with hierarchical reinforcement learning that can also learn higher level temporal abstractions. Our proposed model is end-to-end trainable with differentiable operations. We show that our model outperforms strong baselines on character-level translation task from WMT{'}15 with fewer parameters and computes alignments that are qualitatively intuitive."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gulcehre-etal-2017-plan">
    <titleInfo>
        <title>Plan, Attend, Generate: Character-Level Neural Machine Translation with Planning</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Caglar</namePart>
        <namePart type="family">Gulcehre</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Francis</namePart>
        <namePart type="family">Dutil</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Adam</namePart>
        <namePart type="family">Trischler</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yoshua</namePart>
        <namePart type="family">Bengio</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2nd Workshop on Representation Learning for NLP</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Phil</namePart>
            <namePart type="family">Blunsom</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Antoine</namePart>
            <namePart type="family">Bordes</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kyunghyun</namePart>
            <namePart type="family">Cho</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Shay</namePart>
            <namePart type="family">Cohen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Chris</namePart>
            <namePart type="family">Dyer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Edward</namePart>
            <namePart type="family">Grefenstette</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Karl</namePart>
            <namePart type="given">Moritz</namePart>
            <namePart type="family">Hermann</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Laura</namePart>
            <namePart type="family">Rimell</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jason</namePart>
            <namePart type="family">Weston</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Scott</namePart>
            <namePart type="family">Yih</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, Canada</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We investigate the integration of a planning mechanism into an encoder-decoder architecture with attention. We develop a model that can plan ahead when it computes alignments between the source and target sequences not only for a single time-step but for the next k time-steps as well by constructing a matrix of proposed future alignments and a commitment vector that governs whether to follow or recompute the plan. This mechanism is inspired by strategic attentive reader and writer (STRAW) model, a recent neural architecture for planning with hierarchical reinforcement learning that can also learn higher level temporal abstractions. Our proposed model is end-to-end trainable with differentiable operations. We show that our model outperforms strong baselines on character-level translation task from WMT’15 with fewer parameters and computes alignments that are qualitatively intuitive.</abstract>
    <identifier type="citekey">gulcehre-etal-2017-plan</identifier>
    <identifier type="doi">10.18653/v1/W17-2627</identifier>
    <location>
        <url>https://aclanthology.org/W17-2627/</url>
    </location>
    <part>
        <date>2017-08</date>
        <extent unit="page">
            <start>228</start>
            <end>234</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Plan, Attend, Generate: Character-Level Neural Machine Translation with Planning
%A Gulcehre, Caglar
%A Dutil, Francis
%A Trischler, Adam
%A Bengio, Yoshua
%Y Blunsom, Phil
%Y Bordes, Antoine
%Y Cho, Kyunghyun
%Y Cohen, Shay
%Y Dyer, Chris
%Y Grefenstette, Edward
%Y Hermann, Karl Moritz
%Y Rimell, Laura
%Y Weston, Jason
%Y Yih, Scott
%S Proceedings of the 2nd Workshop on Representation Learning for NLP
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F gulcehre-etal-2017-plan
%X We investigate the integration of a planning mechanism into an encoder-decoder architecture with attention. We develop a model that can plan ahead when it computes alignments between the source and target sequences not only for a single time-step but for the next k time-steps as well by constructing a matrix of proposed future alignments and a commitment vector that governs whether to follow or recompute the plan. This mechanism is inspired by strategic attentive reader and writer (STRAW) model, a recent neural architecture for planning with hierarchical reinforcement learning that can also learn higher level temporal abstractions. Our proposed model is end-to-end trainable with differentiable operations. We show that our model outperforms strong baselines on character-level translation task from WMT’15 with fewer parameters and computes alignments that are qualitatively intuitive.
%R 10.18653/v1/W17-2627
%U https://aclanthology.org/W17-2627/
%U https://doi.org/10.18653/v1/W17-2627
%P 228-234
Markdown (Informal)
[Plan, Attend, Generate: Character-Level Neural Machine Translation with Planning](https://aclanthology.org/W17-2627/) (Gulcehre et al., RepL4NLP 2017)
ACL