@inproceedings{tu-etal-2017-learning,
    title = "Learning to Embed Words in Context for Syntactic Tasks",
    author = "Tu, Lifu  and
      Gimpel, Kevin  and
      Livescu, Karen",
    editor = "Blunsom, Phil  and
      Bordes, Antoine  and
      Cho, Kyunghyun  and
      Cohen, Shay  and
      Dyer, Chris  and
      Grefenstette, Edward  and
      Hermann, Karl Moritz  and
      Rimell, Laura  and
      Weston, Jason  and
      Yih, Scott",
    booktitle = "Proceedings of the 2nd Workshop on Representation Learning for {NLP}",
    month = aug,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W17-2632/",
    doi = "10.18653/v1/W17-2632",
    pages = "265--275",
    abstract = "We present models for embedding words in the context of surrounding words. Such models, which we refer to as token embeddings, represent the characteristics of a word that are specific to a given context, such as word sense, syntactic category, and semantic role. We explore simple, efficient token embedding models based on standard neural network architectures. We learn token embeddings on a large amount of unannotated text and evaluate them as features for part-of-speech taggers and dependency parsers trained on much smaller amounts of annotated data. We find that predictors endowed with token embeddings consistently outperform baseline predictors across a range of context window and training set sizes."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tu-etal-2017-learning">
    <titleInfo>
        <title>Learning to Embed Words in Context for Syntactic Tasks</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Lifu</namePart>
        <namePart type="family">Tu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Kevin</namePart>
        <namePart type="family">Gimpel</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Karen</namePart>
        <namePart type="family">Livescu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2nd Workshop on Representation Learning for NLP</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Phil</namePart>
            <namePart type="family">Blunsom</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Antoine</namePart>
            <namePart type="family">Bordes</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kyunghyun</namePart>
            <namePart type="family">Cho</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Shay</namePart>
            <namePart type="family">Cohen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Chris</namePart>
            <namePart type="family">Dyer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Edward</namePart>
            <namePart type="family">Grefenstette</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Karl</namePart>
            <namePart type="given">Moritz</namePart>
            <namePart type="family">Hermann</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Laura</namePart>
            <namePart type="family">Rimell</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jason</namePart>
            <namePart type="family">Weston</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Scott</namePart>
            <namePart type="family">Yih</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, Canada</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present models for embedding words in the context of surrounding words. Such models, which we refer to as token embeddings, represent the characteristics of a word that are specific to a given context, such as word sense, syntactic category, and semantic role. We explore simple, efficient token embedding models based on standard neural network architectures. We learn token embeddings on a large amount of unannotated text and evaluate them as features for part-of-speech taggers and dependency parsers trained on much smaller amounts of annotated data. We find that predictors endowed with token embeddings consistently outperform baseline predictors across a range of context window and training set sizes.</abstract>
    <identifier type="citekey">tu-etal-2017-learning</identifier>
    <identifier type="doi">10.18653/v1/W17-2632</identifier>
    <location>
        <url>https://aclanthology.org/W17-2632/</url>
    </location>
    <part>
        <date>2017-08</date>
        <extent unit="page">
            <start>265</start>
            <end>275</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning to Embed Words in Context for Syntactic Tasks
%A Tu, Lifu
%A Gimpel, Kevin
%A Livescu, Karen
%Y Blunsom, Phil
%Y Bordes, Antoine
%Y Cho, Kyunghyun
%Y Cohen, Shay
%Y Dyer, Chris
%Y Grefenstette, Edward
%Y Hermann, Karl Moritz
%Y Rimell, Laura
%Y Weston, Jason
%Y Yih, Scott
%S Proceedings of the 2nd Workshop on Representation Learning for NLP
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F tu-etal-2017-learning
%X We present models for embedding words in the context of surrounding words. Such models, which we refer to as token embeddings, represent the characteristics of a word that are specific to a given context, such as word sense, syntactic category, and semantic role. We explore simple, efficient token embedding models based on standard neural network architectures. We learn token embeddings on a large amount of unannotated text and evaluate them as features for part-of-speech taggers and dependency parsers trained on much smaller amounts of annotated data. We find that predictors endowed with token embeddings consistently outperform baseline predictors across a range of context window and training set sizes.
%R 10.18653/v1/W17-2632
%U https://aclanthology.org/W17-2632/
%U https://doi.org/10.18653/v1/W17-2632
%P 265-275
Markdown (Informal)
[Learning to Embed Words in Context for Syntactic Tasks](https://aclanthology.org/W17-2632/) (Tu et al., RepL4NLP 2017)
ACL