@inproceedings{vanzo-etal-2017-structured,
title = "Structured Learning for Context-aware Spoken Language Understanding of Robotic Commands",
author = "Vanzo, Andrea and
Croce, Danilo and
Basili, Roberto and
Nardi, Daniele",
editor = "Bansal, Mohit and
Matuszek, Cynthia and
Andreas, Jacob and
Artzi, Yoav and
Bisk, Yonatan",
booktitle = "Proceedings of the First Workshop on Language Grounding for Robotics",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2804",
doi = "10.18653/v1/W17-2804",
pages = "25--34",
abstract = "Service robots are expected to operate in specific environments, where the presence of humans plays a key role. A major feature of such robotics platforms is thus the ability to react to spoken commands. This requires the understanding of the user utterance with an accuracy able to trigger the robot reaction. Such correct interpretation of linguistic exchanges depends on physical, cognitive and language-dependent aspects related to the environment. In this work, we present the empirical evaluation of an adaptive Spoken Language Understanding chain for robotic commands, that explicitly depends on the operational environment during both the learning and recognition stages. The effectiveness of such a context-sensitive command interpretation is tested against an extension of an already existing corpus of commands, that introduced explicit perceptual knowledge: this enabled deeper measures proving that more accurate disambiguation capabilities can be actually obtained.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vanzo-etal-2017-structured">
<titleInfo>
<title>Structured Learning for Context-aware Spoken Language Understanding of Robotic Commands</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Vanzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danilo</namePart>
<namePart type="family">Croce</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Basili</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniele</namePart>
<namePart type="family">Nardi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Language Grounding for Robotics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cynthia</namePart>
<namePart type="family">Matuszek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Andreas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Artzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Bisk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Service robots are expected to operate in specific environments, where the presence of humans plays a key role. A major feature of such robotics platforms is thus the ability to react to spoken commands. This requires the understanding of the user utterance with an accuracy able to trigger the robot reaction. Such correct interpretation of linguistic exchanges depends on physical, cognitive and language-dependent aspects related to the environment. In this work, we present the empirical evaluation of an adaptive Spoken Language Understanding chain for robotic commands, that explicitly depends on the operational environment during both the learning and recognition stages. The effectiveness of such a context-sensitive command interpretation is tested against an extension of an already existing corpus of commands, that introduced explicit perceptual knowledge: this enabled deeper measures proving that more accurate disambiguation capabilities can be actually obtained.</abstract>
<identifier type="citekey">vanzo-etal-2017-structured</identifier>
<identifier type="doi">10.18653/v1/W17-2804</identifier>
<location>
<url>https://aclanthology.org/W17-2804</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>25</start>
<end>34</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Structured Learning for Context-aware Spoken Language Understanding of Robotic Commands
%A Vanzo, Andrea
%A Croce, Danilo
%A Basili, Roberto
%A Nardi, Daniele
%Y Bansal, Mohit
%Y Matuszek, Cynthia
%Y Andreas, Jacob
%Y Artzi, Yoav
%Y Bisk, Yonatan
%S Proceedings of the First Workshop on Language Grounding for Robotics
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F vanzo-etal-2017-structured
%X Service robots are expected to operate in specific environments, where the presence of humans plays a key role. A major feature of such robotics platforms is thus the ability to react to spoken commands. This requires the understanding of the user utterance with an accuracy able to trigger the robot reaction. Such correct interpretation of linguistic exchanges depends on physical, cognitive and language-dependent aspects related to the environment. In this work, we present the empirical evaluation of an adaptive Spoken Language Understanding chain for robotic commands, that explicitly depends on the operational environment during both the learning and recognition stages. The effectiveness of such a context-sensitive command interpretation is tested against an extension of an already existing corpus of commands, that introduced explicit perceptual knowledge: this enabled deeper measures proving that more accurate disambiguation capabilities can be actually obtained.
%R 10.18653/v1/W17-2804
%U https://aclanthology.org/W17-2804
%U https://doi.org/10.18653/v1/W17-2804
%P 25-34
Markdown (Informal)
[Structured Learning for Context-aware Spoken Language Understanding of Robotic Commands](https://aclanthology.org/W17-2804) (Vanzo et al., RoboNLP 2017)
ACL