@inproceedings{alomari-etal-2017-natural,
    title = "Natural Language Grounding and Grammar Induction for Robotic Manipulation Commands",
    author = "Alomari, Muhannad  and
      Duckworth, Paul  and
      Hawasly, Majd  and
      Hogg, David C.  and
      Cohn, Anthony G.",
    editor = "Bansal, Mohit  and
      Matuszek, Cynthia  and
      Andreas, Jacob  and
      Artzi, Yoav  and
      Bisk, Yonatan",
    booktitle = "Proceedings of the First Workshop on Language Grounding for Robotics",
    month = aug,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W17-2805/",
    doi = "10.18653/v1/W17-2805",
    pages = "35--43",
    abstract = "We present a cognitively plausible system capable of acquiring knowledge in language and vision from pairs of short video clips and linguistic descriptions. The aim of this work is to teach a robot manipulator how to execute natural language commands by demonstration. This is achieved by first learning a set of visual `concepts' that abstract the visual feature spaces into concepts that have human-level meaning. Second, learning the mapping/grounding between words and the extracted visual concepts. Third, inducing grammar rules via a semantic representation known as Robot Control Language (RCL). We evaluate our approach against state-of-the-art supervised and unsupervised grounding and grammar induction systems, and show that a robot can learn to execute never seen-before commands from pairs of unlabelled linguistic and visual inputs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="alomari-etal-2017-natural">
    <titleInfo>
        <title>Natural Language Grounding and Grammar Induction for Robotic Manipulation Commands</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Muhannad</namePart>
        <namePart type="family">Alomari</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Paul</namePart>
        <namePart type="family">Duckworth</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Majd</namePart>
        <namePart type="family">Hawasly</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">David</namePart>
        <namePart type="given">C</namePart>
        <namePart type="family">Hogg</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Anthony</namePart>
        <namePart type="given">G</namePart>
        <namePart type="family">Cohn</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the First Workshop on Language Grounding for Robotics</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Mohit</namePart>
            <namePart type="family">Bansal</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Cynthia</namePart>
            <namePart type="family">Matuszek</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jacob</namePart>
            <namePart type="family">Andreas</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yoav</namePart>
            <namePart type="family">Artzi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yonatan</namePart>
            <namePart type="family">Bisk</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, Canada</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present a cognitively plausible system capable of acquiring knowledge in language and vision from pairs of short video clips and linguistic descriptions. The aim of this work is to teach a robot manipulator how to execute natural language commands by demonstration. This is achieved by first learning a set of visual ‘concepts’ that abstract the visual feature spaces into concepts that have human-level meaning. Second, learning the mapping/grounding between words and the extracted visual concepts. Third, inducing grammar rules via a semantic representation known as Robot Control Language (RCL). We evaluate our approach against state-of-the-art supervised and unsupervised grounding and grammar induction systems, and show that a robot can learn to execute never seen-before commands from pairs of unlabelled linguistic and visual inputs.</abstract>
    <identifier type="citekey">alomari-etal-2017-natural</identifier>
    <identifier type="doi">10.18653/v1/W17-2805</identifier>
    <location>
        <url>https://aclanthology.org/W17-2805/</url>
    </location>
    <part>
        <date>2017-08</date>
        <extent unit="page">
            <start>35</start>
            <end>43</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Natural Language Grounding and Grammar Induction for Robotic Manipulation Commands
%A Alomari, Muhannad
%A Duckworth, Paul
%A Hawasly, Majd
%A Hogg, David C.
%A Cohn, Anthony G.
%Y Bansal, Mohit
%Y Matuszek, Cynthia
%Y Andreas, Jacob
%Y Artzi, Yoav
%Y Bisk, Yonatan
%S Proceedings of the First Workshop on Language Grounding for Robotics
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F alomari-etal-2017-natural
%X We present a cognitively plausible system capable of acquiring knowledge in language and vision from pairs of short video clips and linguistic descriptions. The aim of this work is to teach a robot manipulator how to execute natural language commands by demonstration. This is achieved by first learning a set of visual ‘concepts’ that abstract the visual feature spaces into concepts that have human-level meaning. Second, learning the mapping/grounding between words and the extracted visual concepts. Third, inducing grammar rules via a semantic representation known as Robot Control Language (RCL). We evaluate our approach against state-of-the-art supervised and unsupervised grounding and grammar induction systems, and show that a robot can learn to execute never seen-before commands from pairs of unlabelled linguistic and visual inputs.
%R 10.18653/v1/W17-2805
%U https://aclanthology.org/W17-2805/
%U https://doi.org/10.18653/v1/W17-2805
%P 35-43
Markdown (Informal)
[Natural Language Grounding and Grammar Induction for Robotic Manipulation Commands](https://aclanthology.org/W17-2805/) (Alomari et al., RoboNLP 2017)
ACL