@inproceedings{lucy-gauthier-2017-distributional,
title = "Are Distributional Representations Ready for the Real World? Evaluating Word Vectors for Grounded Perceptual Meaning",
author = "Lucy, Li and
Gauthier, Jon",
editor = "Bansal, Mohit and
Matuszek, Cynthia and
Andreas, Jacob and
Artzi, Yoav and
Bisk, Yonatan",
booktitle = "Proceedings of the First Workshop on Language Grounding for Robotics",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2810",
doi = "10.18653/v1/W17-2810",
pages = "76--85",
abstract = "Distributional word representation methods exploit word co-occurrences to build compact vector encodings of words. While these representations enjoy widespread use in modern natural language processing, it is unclear whether they accurately encode all necessary facets of conceptual meaning. In this paper, we evaluate how well these representations can predict perceptual and conceptual features of concrete concepts, drawing on two semantic norm datasets sourced from human participants. We find that several standard word representations fail to encode many salient perceptual features of concepts, and show that these deficits correlate with word-word similarity prediction errors. Our analyses provide motivation for grounded and embodied language learning approaches, which may help to remedy these deficits.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lucy-gauthier-2017-distributional">
<titleInfo>
<title>Are Distributional Representations Ready for the Real World? Evaluating Word Vectors for Grounded Perceptual Meaning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Lucy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jon</namePart>
<namePart type="family">Gauthier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Language Grounding for Robotics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cynthia</namePart>
<namePart type="family">Matuszek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Andreas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Artzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Bisk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Distributional word representation methods exploit word co-occurrences to build compact vector encodings of words. While these representations enjoy widespread use in modern natural language processing, it is unclear whether they accurately encode all necessary facets of conceptual meaning. In this paper, we evaluate how well these representations can predict perceptual and conceptual features of concrete concepts, drawing on two semantic norm datasets sourced from human participants. We find that several standard word representations fail to encode many salient perceptual features of concepts, and show that these deficits correlate with word-word similarity prediction errors. Our analyses provide motivation for grounded and embodied language learning approaches, which may help to remedy these deficits.</abstract>
<identifier type="citekey">lucy-gauthier-2017-distributional</identifier>
<identifier type="doi">10.18653/v1/W17-2810</identifier>
<location>
<url>https://aclanthology.org/W17-2810</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>76</start>
<end>85</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Are Distributional Representations Ready for the Real World? Evaluating Word Vectors for Grounded Perceptual Meaning
%A Lucy, Li
%A Gauthier, Jon
%Y Bansal, Mohit
%Y Matuszek, Cynthia
%Y Andreas, Jacob
%Y Artzi, Yoav
%Y Bisk, Yonatan
%S Proceedings of the First Workshop on Language Grounding for Robotics
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F lucy-gauthier-2017-distributional
%X Distributional word representation methods exploit word co-occurrences to build compact vector encodings of words. While these representations enjoy widespread use in modern natural language processing, it is unclear whether they accurately encode all necessary facets of conceptual meaning. In this paper, we evaluate how well these representations can predict perceptual and conceptual features of concrete concepts, drawing on two semantic norm datasets sourced from human participants. We find that several standard word representations fail to encode many salient perceptual features of concepts, and show that these deficits correlate with word-word similarity prediction errors. Our analyses provide motivation for grounded and embodied language learning approaches, which may help to remedy these deficits.
%R 10.18653/v1/W17-2810
%U https://aclanthology.org/W17-2810
%U https://doi.org/10.18653/v1/W17-2810
%P 76-85
Markdown (Informal)
[Are Distributional Representations Ready for the Real World? Evaluating Word Vectors for Grounded Perceptual Meaning](https://aclanthology.org/W17-2810) (Lucy & Gauthier, RoboNLP 2017)
ACL