@inproceedings{serra-etal-2017-class,
title = "Class-based Prediction Errors to Detect Hate Speech with Out-of-vocabulary Words",
author = "Serr{\`a}, Joan and
Leontiadis, Ilias and
Spathis, Dimitris and
Stringhini, Gianluca and
Blackburn, Jeremy and
Vakali, Athena",
editor = "Waseem, Zeerak and
Chung, Wendy Hui Kyong and
Hovy, Dirk and
Tetreault, Joel",
booktitle = "Proceedings of the First Workshop on Abusive Language Online",
month = aug,
year = "2017",
address = "Vancouver, BC, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-3005",
doi = "10.18653/v1/W17-3005",
pages = "36--40",
abstract = "Common approaches to text categorization essentially rely either on n-gram counts or on word embeddings. This presents important difficulties in highly dynamic or quickly-interacting environments, where the appearance of new words and/or varied misspellings is the norm. A paradigmatic example of this situation is abusive online behavior, with social networks and media platforms struggling to effectively combat uncommon or non-blacklisted hate words. To better deal with these issues in those fast-paced environments, we propose using the error signal of class-based language models as input to text classification algorithms. In particular, we train a next-character prediction model for any given class and then exploit the error of such class-based models to inform a neural network classifier. This way, we shift from the {`}ability to describe{'} seen documents to the {`}ability to predict{'} unseen content. Preliminary studies using out-of-vocabulary splits from abusive tweet data show promising results, outperforming competitive text categorization strategies by 4-11{\%}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="serra-etal-2017-class">
<titleInfo>
<title>Class-based Prediction Errors to Detect Hate Speech with Out-of-vocabulary Words</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joan</namePart>
<namePart type="family">Serrà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ilias</namePart>
<namePart type="family">Leontiadis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitris</namePart>
<namePart type="family">Spathis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gianluca</namePart>
<namePart type="family">Stringhini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeremy</namePart>
<namePart type="family">Blackburn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Athena</namePart>
<namePart type="family">Vakali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Abusive Language Online</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zeerak</namePart>
<namePart type="family">Waseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wendy</namePart>
<namePart type="given">Hui</namePart>
<namePart type="given">Kyong</namePart>
<namePart type="family">Chung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, BC, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Common approaches to text categorization essentially rely either on n-gram counts or on word embeddings. This presents important difficulties in highly dynamic or quickly-interacting environments, where the appearance of new words and/or varied misspellings is the norm. A paradigmatic example of this situation is abusive online behavior, with social networks and media platforms struggling to effectively combat uncommon or non-blacklisted hate words. To better deal with these issues in those fast-paced environments, we propose using the error signal of class-based language models as input to text classification algorithms. In particular, we train a next-character prediction model for any given class and then exploit the error of such class-based models to inform a neural network classifier. This way, we shift from the ‘ability to describe’ seen documents to the ‘ability to predict’ unseen content. Preliminary studies using out-of-vocabulary splits from abusive tweet data show promising results, outperforming competitive text categorization strategies by 4-11%.</abstract>
<identifier type="citekey">serra-etal-2017-class</identifier>
<identifier type="doi">10.18653/v1/W17-3005</identifier>
<location>
<url>https://aclanthology.org/W17-3005</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>36</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Class-based Prediction Errors to Detect Hate Speech with Out-of-vocabulary Words
%A Serrà, Joan
%A Leontiadis, Ilias
%A Spathis, Dimitris
%A Stringhini, Gianluca
%A Blackburn, Jeremy
%A Vakali, Athena
%Y Waseem, Zeerak
%Y Chung, Wendy Hui Kyong
%Y Hovy, Dirk
%Y Tetreault, Joel
%S Proceedings of the First Workshop on Abusive Language Online
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, BC, Canada
%F serra-etal-2017-class
%X Common approaches to text categorization essentially rely either on n-gram counts or on word embeddings. This presents important difficulties in highly dynamic or quickly-interacting environments, where the appearance of new words and/or varied misspellings is the norm. A paradigmatic example of this situation is abusive online behavior, with social networks and media platforms struggling to effectively combat uncommon or non-blacklisted hate words. To better deal with these issues in those fast-paced environments, we propose using the error signal of class-based language models as input to text classification algorithms. In particular, we train a next-character prediction model for any given class and then exploit the error of such class-based models to inform a neural network classifier. This way, we shift from the ‘ability to describe’ seen documents to the ‘ability to predict’ unseen content. Preliminary studies using out-of-vocabulary splits from abusive tweet data show promising results, outperforming competitive text categorization strategies by 4-11%.
%R 10.18653/v1/W17-3005
%U https://aclanthology.org/W17-3005
%U https://doi.org/10.18653/v1/W17-3005
%P 36-40
Markdown (Informal)
[Class-based Prediction Errors to Detect Hate Speech with Out-of-vocabulary Words](https://aclanthology.org/W17-3005) (Serrà et al., ALW 2017)
ACL