@inproceedings{morales-etal-2017-cross,
    title = "A Cross-modal Review of Indicators for Depression Detection Systems",
    author = "Morales, Michelle  and
      Scherer, Stefan  and
      Levitan, Rivka",
    editor = "Hollingshead, Kristy  and
      Ireland, Molly E.  and
      Loveys, Kate",
    booktitle = "Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology {---} From Linguistic Signal to Clinical Reality",
    month = aug,
    year = "2017",
    address = "Vancouver, BC",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W17-3101/",
    doi = "10.18653/v1/W17-3101",
    pages = "1--12",
    abstract = "Automatic detection of depression has attracted increasing attention from researchers in psychology, computer science, linguistics, and related disciplines. As a result, promising depression detection systems have been reported. This paper surveys these efforts by presenting the first cross-modal review of depression detection systems and discusses best practices and most promising approaches to this task."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="morales-etal-2017-cross">
    <titleInfo>
        <title>A Cross-modal Review of Indicators for Depression Detection Systems</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Michelle</namePart>
        <namePart type="family">Morales</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Stefan</namePart>
        <namePart type="family">Scherer</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Rivka</namePart>
        <namePart type="family">Levitan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology — From Linguistic Signal to Clinical Reality</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Kristy</namePart>
            <namePart type="family">Hollingshead</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Molly</namePart>
            <namePart type="given">E</namePart>
            <namePart type="family">Ireland</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kate</namePart>
            <namePart type="family">Loveys</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, BC</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Automatic detection of depression has attracted increasing attention from researchers in psychology, computer science, linguistics, and related disciplines. As a result, promising depression detection systems have been reported. This paper surveys these efforts by presenting the first cross-modal review of depression detection systems and discusses best practices and most promising approaches to this task.</abstract>
    <identifier type="citekey">morales-etal-2017-cross</identifier>
    <identifier type="doi">10.18653/v1/W17-3101</identifier>
    <location>
        <url>https://aclanthology.org/W17-3101/</url>
    </location>
    <part>
        <date>2017-08</date>
        <extent unit="page">
            <start>1</start>
            <end>12</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Cross-modal Review of Indicators for Depression Detection Systems
%A Morales, Michelle
%A Scherer, Stefan
%A Levitan, Rivka
%Y Hollingshead, Kristy
%Y Ireland, Molly E.
%Y Loveys, Kate
%S Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology — From Linguistic Signal to Clinical Reality
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, BC
%F morales-etal-2017-cross
%X Automatic detection of depression has attracted increasing attention from researchers in psychology, computer science, linguistics, and related disciplines. As a result, promising depression detection systems have been reported. This paper surveys these efforts by presenting the first cross-modal review of depression detection systems and discusses best practices and most promising approaches to this task.
%R 10.18653/v1/W17-3101
%U https://aclanthology.org/W17-3101/
%U https://doi.org/10.18653/v1/W17-3101
%P 1-12
Markdown (Informal)
[A Cross-modal Review of Indicators for Depression Detection Systems](https://aclanthology.org/W17-3101/) (Morales et al., CLPsych 2017)
ACL