@inproceedings{morales-etal-2017-cross,
title = "A Cross-modal Review of Indicators for Depression Detection Systems",
author = "Morales, Michelle and
Scherer, Stefan and
Levitan, Rivka",
editor = "Hollingshead, Kristy and
Ireland, Molly E. and
Loveys, Kate",
booktitle = "Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology {---} From Linguistic Signal to Clinical Reality",
month = aug,
year = "2017",
address = "Vancouver, BC",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-3101",
doi = "10.18653/v1/W17-3101",
pages = "1--12",
abstract = "Automatic detection of depression has attracted increasing attention from researchers in psychology, computer science, linguistics, and related disciplines. As a result, promising depression detection systems have been reported. This paper surveys these efforts by presenting the first cross-modal review of depression detection systems and discusses best practices and most promising approaches to this task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="morales-etal-2017-cross">
<titleInfo>
<title>A Cross-modal Review of Indicators for Depression Detection Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michelle</namePart>
<namePart type="family">Morales</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Scherer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rivka</namePart>
<namePart type="family">Levitan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology — From Linguistic Signal to Clinical Reality</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristy</namePart>
<namePart type="family">Hollingshead</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Molly</namePart>
<namePart type="given">E</namePart>
<namePart type="family">Ireland</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Loveys</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, BC</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic detection of depression has attracted increasing attention from researchers in psychology, computer science, linguistics, and related disciplines. As a result, promising depression detection systems have been reported. This paper surveys these efforts by presenting the first cross-modal review of depression detection systems and discusses best practices and most promising approaches to this task.</abstract>
<identifier type="citekey">morales-etal-2017-cross</identifier>
<identifier type="doi">10.18653/v1/W17-3101</identifier>
<location>
<url>https://aclanthology.org/W17-3101</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>1</start>
<end>12</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Cross-modal Review of Indicators for Depression Detection Systems
%A Morales, Michelle
%A Scherer, Stefan
%A Levitan, Rivka
%Y Hollingshead, Kristy
%Y Ireland, Molly E.
%Y Loveys, Kate
%S Proceedings of the Fourth Workshop on Computational Linguistics and Clinical Psychology — From Linguistic Signal to Clinical Reality
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, BC
%F morales-etal-2017-cross
%X Automatic detection of depression has attracted increasing attention from researchers in psychology, computer science, linguistics, and related disciplines. As a result, promising depression detection systems have been reported. This paper surveys these efforts by presenting the first cross-modal review of depression detection systems and discusses best practices and most promising approaches to this task.
%R 10.18653/v1/W17-3101
%U https://aclanthology.org/W17-3101
%U https://doi.org/10.18653/v1/W17-3101
%P 1-12
Markdown (Informal)
[A Cross-modal Review of Indicators for Depression Detection Systems](https://aclanthology.org/W17-3101) (Morales et al., CLPsych 2017)
ACL