@inproceedings{carpuat-etal-2017-detecting,
title = "Detecting Cross-Lingual Semantic Divergence for Neural Machine Translation",
author = "Carpuat, Marine and
Vyas, Yogarshi and
Niu, Xing",
editor = "Luong, Thang and
Birch, Alexandra and
Neubig, Graham and
Finch, Andrew",
booktitle = "Proceedings of the First Workshop on Neural Machine Translation",
month = aug,
year = "2017",
address = "Vancouver",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-3209",
doi = "10.18653/v1/W17-3209",
pages = "69--79",
abstract = "Parallel corpora are often not as parallel as one might assume: non-literal translations and noisy translations abound, even in curated corpora routinely used for training and evaluation. We use a cross-lingual textual entailment system to distinguish sentence pairs that are parallel in meaning from those that are not, and show that filtering out divergent examples from training improves translation quality.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="carpuat-etal-2017-detecting">
<titleInfo>
<title>Detecting Cross-Lingual Semantic Divergence for Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yogarshi</namePart>
<namePart type="family">Vyas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xing</namePart>
<namePart type="family">Niu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thang</namePart>
<namePart type="family">Luong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Birch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Finch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Parallel corpora are often not as parallel as one might assume: non-literal translations and noisy translations abound, even in curated corpora routinely used for training and evaluation. We use a cross-lingual textual entailment system to distinguish sentence pairs that are parallel in meaning from those that are not, and show that filtering out divergent examples from training improves translation quality.</abstract>
<identifier type="citekey">carpuat-etal-2017-detecting</identifier>
<identifier type="doi">10.18653/v1/W17-3209</identifier>
<location>
<url>https://aclanthology.org/W17-3209</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>69</start>
<end>79</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Cross-Lingual Semantic Divergence for Neural Machine Translation
%A Carpuat, Marine
%A Vyas, Yogarshi
%A Niu, Xing
%Y Luong, Thang
%Y Birch, Alexandra
%Y Neubig, Graham
%Y Finch, Andrew
%S Proceedings of the First Workshop on Neural Machine Translation
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver
%F carpuat-etal-2017-detecting
%X Parallel corpora are often not as parallel as one might assume: non-literal translations and noisy translations abound, even in curated corpora routinely used for training and evaluation. We use a cross-lingual textual entailment system to distinguish sentence pairs that are parallel in meaning from those that are not, and show that filtering out divergent examples from training improves translation quality.
%R 10.18653/v1/W17-3209
%U https://aclanthology.org/W17-3209
%U https://doi.org/10.18653/v1/W17-3209
%P 69-79
Markdown (Informal)
[Detecting Cross-Lingual Semantic Divergence for Neural Machine Translation](https://aclanthology.org/W17-3209) (Carpuat et al., NGT 2017)
ACL