@inproceedings{van-der-lee-etal-2017-pass,
title = "{PASS}: A {D}utch data-to-text system for soccer, targeted towards specific audiences",
author = "van der Lee, Chris and
Krahmer, Emiel and
Wubben, Sander",
editor = "Alonso, Jose M. and
Bugar{\'\i}n, Alberto and
Reiter, Ehud",
booktitle = "Proceedings of the 10th International Conference on Natural Language Generation",
month = sep,
year = "2017",
address = "Santiago de Compostela, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-3513",
doi = "10.18653/v1/W17-3513",
pages = "95--104",
abstract = "We present PASS, a data-to-text system that generates Dutch soccer reports from match statistics. One of the novel elements of PASS is the fact that the system produces corpus-based texts tailored towards fans of one club or the other, which can most prominently be observed in the tone of voice used in the reports. Furthermore, the system is open source and uses a modular design, which makes it relatively easy for people to add extensions. Human-based evaluation shows that people are generally positive towards PASS in regards to its clarity and fluency, and that the tailoring is accurately recognized in most cases.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-der-lee-etal-2017-pass">
<titleInfo>
<title>PASS: A Dutch data-to-text system for soccer, targeted towards specific audiences</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">van der Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sander</namePart>
<namePart type="family">Wubben</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Alonso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Bugarín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santiago de Compostela, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present PASS, a data-to-text system that generates Dutch soccer reports from match statistics. One of the novel elements of PASS is the fact that the system produces corpus-based texts tailored towards fans of one club or the other, which can most prominently be observed in the tone of voice used in the reports. Furthermore, the system is open source and uses a modular design, which makes it relatively easy for people to add extensions. Human-based evaluation shows that people are generally positive towards PASS in regards to its clarity and fluency, and that the tailoring is accurately recognized in most cases.</abstract>
<identifier type="citekey">van-der-lee-etal-2017-pass</identifier>
<identifier type="doi">10.18653/v1/W17-3513</identifier>
<location>
<url>https://aclanthology.org/W17-3513</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>95</start>
<end>104</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PASS: A Dutch data-to-text system for soccer, targeted towards specific audiences
%A van der Lee, Chris
%A Krahmer, Emiel
%A Wubben, Sander
%Y Alonso, Jose M.
%Y Bugarín, Alberto
%Y Reiter, Ehud
%S Proceedings of the 10th International Conference on Natural Language Generation
%D 2017
%8 September
%I Association for Computational Linguistics
%C Santiago de Compostela, Spain
%F van-der-lee-etal-2017-pass
%X We present PASS, a data-to-text system that generates Dutch soccer reports from match statistics. One of the novel elements of PASS is the fact that the system produces corpus-based texts tailored towards fans of one club or the other, which can most prominently be observed in the tone of voice used in the reports. Furthermore, the system is open source and uses a modular design, which makes it relatively easy for people to add extensions. Human-based evaluation shows that people are generally positive towards PASS in regards to its clarity and fluency, and that the tailoring is accurately recognized in most cases.
%R 10.18653/v1/W17-3513
%U https://aclanthology.org/W17-3513
%U https://doi.org/10.18653/v1/W17-3513
%P 95-104
Markdown (Informal)
[PASS: A Dutch data-to-text system for soccer, targeted towards specific audiences](https://aclanthology.org/W17-3513) (van der Lee et al., INLG 2017)
ACL