@inproceedings{gardent-etal-2017-webnlg,
title = "The {W}eb{NLG} Challenge: Generating Text from {RDF} Data",
author = "Gardent, Claire and
Shimorina, Anastasia and
Narayan, Shashi and
Perez-Beltrachini, Laura",
editor = "Alonso, Jose M. and
Bugar{\'i}n, Alberto and
Reiter, Ehud",
booktitle = "Proceedings of the 10th International Conference on Natural Language Generation",
month = sep,
year = "2017",
address = "Santiago de Compostela, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-3518/",
doi = "10.18653/v1/W17-3518",
pages = "124--133",
abstract = "The WebNLG challenge consists in mapping sets of RDF triples to text. It provides a common benchmark on which to train, evaluate and compare {\textquotedblleft}microplanners{\textquotedblright}, i.e. generation systems that verbalise a given content by making a range of complex interacting choices including referring expression generation, aggregation, lexicalisation, surface realisation and sentence segmentation. In this paper, we introduce the microplanning task, describe data preparation, introduce our evaluation methodology, analyse participant results and provide a brief description of the participating systems."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gardent-etal-2017-webnlg">
<titleInfo>
<title>The WebNLG Challenge: Generating Text from RDF Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Gardent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anastasia</namePart>
<namePart type="family">Shimorina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shashi</namePart>
<namePart type="family">Narayan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Perez-Beltrachini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Alonso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Bugarín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santiago de Compostela, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The WebNLG challenge consists in mapping sets of RDF triples to text. It provides a common benchmark on which to train, evaluate and compare “microplanners”, i.e. generation systems that verbalise a given content by making a range of complex interacting choices including referring expression generation, aggregation, lexicalisation, surface realisation and sentence segmentation. In this paper, we introduce the microplanning task, describe data preparation, introduce our evaluation methodology, analyse participant results and provide a brief description of the participating systems.</abstract>
<identifier type="citekey">gardent-etal-2017-webnlg</identifier>
<identifier type="doi">10.18653/v1/W17-3518</identifier>
<location>
<url>https://aclanthology.org/W17-3518/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>124</start>
<end>133</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The WebNLG Challenge: Generating Text from RDF Data
%A Gardent, Claire
%A Shimorina, Anastasia
%A Narayan, Shashi
%A Perez-Beltrachini, Laura
%Y Alonso, Jose M.
%Y Bugarín, Alberto
%Y Reiter, Ehud
%S Proceedings of the 10th International Conference on Natural Language Generation
%D 2017
%8 September
%I Association for Computational Linguistics
%C Santiago de Compostela, Spain
%F gardent-etal-2017-webnlg
%X The WebNLG challenge consists in mapping sets of RDF triples to text. It provides a common benchmark on which to train, evaluate and compare “microplanners”, i.e. generation systems that verbalise a given content by making a range of complex interacting choices including referring expression generation, aggregation, lexicalisation, surface realisation and sentence segmentation. In this paper, we introduce the microplanning task, describe data preparation, introduce our evaluation methodology, analyse participant results and provide a brief description of the participating systems.
%R 10.18653/v1/W17-3518
%U https://aclanthology.org/W17-3518/
%U https://doi.org/10.18653/v1/W17-3518
%P 124-133
Markdown (Informal)
[The WebNLG Challenge: Generating Text from RDF Data](https://aclanthology.org/W17-3518/) (Gardent et al., INLG 2017)
ACL
- Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. 2017. The WebNLG Challenge: Generating Text from RDF Data. In Proceedings of the 10th International Conference on Natural Language Generation, pages 124–133, Santiago de Compostela, Spain. Association for Computational Linguistics.