
Proceedings of The 10th International Natural Language Generation conference, pages 154–155,
Santiago de Compostela, Spain, September 4-7 2017. c©2017 Association for Computational Linguistics

Toward an NLG System for Bantu languages: first steps with Runyankore
(demo)

Joan Byamugisha and C. Maria Keet and Brian DeRenzi
Department of Computer Science, University of Cape Town, South Africa,

{jbyamugisha,mkeet,bderenzi}@cs.uct.ac.za

Abstract

There are many domain-specific and
language-specific NLG systems, which are
possibly adaptable across related domains
and languages. The languages in the Bantu
language family have their own set of features
distinct from other major groups, which there-
fore severely limits the options to bootstrap an
NLG system from existing ones. We present
here our first proof-of-concept application
for knowledge-to-text NLG as a plugin to the
Protégé 5.x ontology development system,
tailored to Runyankore, a Bantu language
indigenous to Uganda. It comprises a basic
annotation model for linguistic information
such as noun class, an implementation of
existing verbalisation rules and a CFG for
verbs, and a basic interface for data entry.

1 Introduction

Natural Language Generation systems require con-
tent planning and format for the selected subject do-
main as input and specifics about the natural lan-
guage in order to generate text (Staykova, 2014),
of which the latter tend to be bootstrappable for re-
lated languages (de Oliveira and Sripada, 2014). Our
NLG system uses ontologies to represent domain
knowledge. As for language, we are interested in
Runyankore, a Bantu language indigenous to south
western Uganda. The highly agglutinative struc-
ture and complex verbal morphology of Runyankore
make existing NLG systems based on templates in-
applicable (Keet and Khumalo, 2017). There have
been efforts undertaken to apply the grammar engine

technique instead (Byamugisha et al., 2016a; Bya-
mugisha et al., 2016b; Byamugisha et al., 2016c),
which resulted in theoretical advances in verbaliza-
tion rules for ontologies, pluralization of nouns, and
verb conjugation that address the text generation
needs for Runyankore. We present our implemen-
tation of these algorithms and required linguistic an-
notations as a Protégé 5.x plugin.

2 Linguistic Annotations for NLG

Most NLG systems for ontology verbalization re-
quire some annotations to the ontology’s vocabulary
so as to make the generated sentence sound more
natural language-like. For instance, the lemon model
for ontologies (McCrae and others, 2012). However,
it has been shown to be insufficient for covering
grammar constructs for Bantu languages, most no-
tably due to the noun class system and complex mor-
phological rules (Chavula and Keet, 2014). Other
systems use tailor-made annotation schemata, e.g.
(Androutsopoulos et al., 2013; Keet and Chirema,
2016). While they differ in number of linguistic an-
notation properties, what they share in common is
the separation of annotation from ontology, as pro-
posed in (Buitelaar et al., 2009), and storing that an-
notation in a separate XML file for further process-
ing. We thus also annotated using an XML-based
model, but limited our structure to our information
of interest: NC, part-of-speech, and translation. The
annotation functionality was implemented as a view
tab in the Protégé 5.x plugin, so that it can be used
during either multi-lingual or mono-lingual ontol-
ogy development, or validation of the represented
knowledge in an easily accessible way. The interface

154



also ensures no typographical errors are made in the
XML file. These annotation fields are mandatory,
and we allowed for the use of 0 as the NC for the
POS which is not a noun. These restrictions to input
were achieved using document filters. The XML file
is queried during the verbalization process so as to
obtain the required annotations that are needed for
the algorithms.

3 Implementation of the Grammar Engine

We implemented the algorithms for verbalization
and pluralization presented in (Byamugisha et al.,
2016a; Byamugisha et al., 2016c) as a Java appli-
cation. The CFG specified in (Byamugisha et al.,
2016b) was implemented using the CFG Java tool
(Xu et al., 2011). We used this tool for three main
reasons: our grammar engine implementation was
done in Java, so we wanted a Java tool as well; we
wanted a small CFG implementation for reasonable
performance; and their tool extended Purdom’s al-
gorithm to fulfill Context-Dependent Rule Cover-
age (CDRC), which generates more and simpler sen-
tences. A sample of the generated text is presented
below:
• Buri rupapura rwamakuru n’ekihandiiko ek-

ishohoziibwe, (generated from: Newspaper v
Publication)
• Buri ntaama nerya ebinyaansi byoona, (gener-

ated from: Sheep v ∀ eats.Grass)
The generated text is saved in a text file, which
ensures that the text can be linked to other ap-
plication scenarios. We are working on a bet-
ter design to present the sentences within the tool,
for interaction during multi-modal ontology devel-
opment. The grammar engine can be launched
through the ‘Runyankore>Verbalize’ submenu un-
der the ‘Tools’ menu in Protégé 5.x. The jar
file is available from https://github.com/
runyankorenlg/RunyankoreNLGSystem.

4 Conclusion

We briefly presented the core components of the
Runyankore grammar engine Protégé 5.x plugin.
It implements algorithms for verbalization patterns,
noun pluralization, and verb conjugation. To make
this work, the grammar engine requires linguistic in-
formation about each noun and verb (OWL class and

object property) in the ontology in order to generate
text. This linguistic information is stored in as sep-
arate XML file. The demo will show the working
system and further details of the architecture.

Acknowledgements This work is based on the
research supported by the Hasso Plattner Institute
(HPI) Research School in CS4A at UCT and the Na-
tional Research Foundation of South Africa (Grant
Number 93397).

References
I. Androutsopoulos, G. Lampouras, and D. Galanis.

2013. Generating natural language descriptions from
OWL ontologies: The NaturalOWL system. JAIR,
48:671–715.

P. Buitelaar, P. Cimiano, P. Haase, and M. Sintek.
2009. Towards linguistically grounded ontologies. In
ESWC’09, LNCS 5554, pages 111–125.

J. Byamugisha, C. M. Keet, and B. DeRenzi. 2016a.
Bootstrapping a Runyankore CNL from an isiZulu
CNL. In CNL 2016, Aberdeen, Scotland. Springer LL-
NCS.

J. Byamugisha, C. M. Keet, and B. DeRenzi. 2016b.
Tense and aspect in Runyankore using a context-free
grammar. In INLG 2016, Edinburgh, Scotland.

J. Byamugisha, C. M. Keet, and L. Khumalo. 2016c.
Pluralizing nouns in isiZulu and related languages. In
CICLing 2016, Konya, Turkey.

C. Chavula and C. M. Keet. 2014. Is lemon sufficient for
building multilingual ontologies for bantu languages?
In OWLED’14, volume 1265, pages 61–72, Riva del
Garda, Italy.

R. de Oliveira and S. Sripada. 2014. Adapting sim-
plenlg for brazilian portuguese realisation. In Proc of
INLG’14, pages 93–94. ACL.

C. M. Keet and T. Chirema. 2016. A model for verbaliz-
ing relations with roles in multiple languages. In Poc.
of EKAW’16, volume 10024 of LNAI, pages 384–399,
Bologna, Italy. Springer.

C. M. Keet and L. Khumalo. 2017. Towards
a knowledge-to-text controlled natural language of
isizulu. LRE, 51:131–157.

John McCrae et al. 2012. Interchanging lexical resources
on the semantic web. LRE, 46(4):701–719.

K. Staykova. 2014. Natural language generation and se-
mantic technologies. Cybern. and Info. Tech., 14.

Z. Xu, L. Zheng, and H. Zhen. 2011. A toolkit for gen-
erating sentences from context-free grammars. Int. J.
of Software and Informatics, 5:659–676.

155


