@inproceedings{castro-ferreira-paraboni-2017-improving,
title = "Improving the generation of personalised descriptions",
author = "Castro Ferreira, Thiago and
Paraboni, Ivandr{\'e}",
editor = "Alonso, Jose M. and
Bugar{\'\i}n, Alberto and
Reiter, Ehud",
booktitle = "Proceedings of the 10th International Conference on Natural Language Generation",
month = sep,
year = "2017",
address = "Santiago de Compostela, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-3536",
doi = "10.18653/v1/W17-3536",
pages = "233--237",
abstract = "Referring expression generation (REG) models that use speaker-dependent information require a considerable amount of training data produced by every individual speaker, or may otherwise perform poorly. In this work we propose a simple personalised method for this task, in which speakers are grouped into profiles according to their referential behaviour. Intrinsic evaluation shows that the use of speaker{'}s profiles generally outperforms the personalised method found in previous work.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="castro-ferreira-paraboni-2017-improving">
<titleInfo>
<title>Improving the generation of personalised descriptions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thiago</namePart>
<namePart type="family">Castro Ferreira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivandré</namePart>
<namePart type="family">Paraboni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Alonso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Bugarín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santiago de Compostela, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Referring expression generation (REG) models that use speaker-dependent information require a considerable amount of training data produced by every individual speaker, or may otherwise perform poorly. In this work we propose a simple personalised method for this task, in which speakers are grouped into profiles according to their referential behaviour. Intrinsic evaluation shows that the use of speaker’s profiles generally outperforms the personalised method found in previous work.</abstract>
<identifier type="citekey">castro-ferreira-paraboni-2017-improving</identifier>
<identifier type="doi">10.18653/v1/W17-3536</identifier>
<location>
<url>https://aclanthology.org/W17-3536</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>233</start>
<end>237</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving the generation of personalised descriptions
%A Castro Ferreira, Thiago
%A Paraboni, Ivandré
%Y Alonso, Jose M.
%Y Bugarín, Alberto
%Y Reiter, Ehud
%S Proceedings of the 10th International Conference on Natural Language Generation
%D 2017
%8 September
%I Association for Computational Linguistics
%C Santiago de Compostela, Spain
%F castro-ferreira-paraboni-2017-improving
%X Referring expression generation (REG) models that use speaker-dependent information require a considerable amount of training data produced by every individual speaker, or may otherwise perform poorly. In this work we propose a simple personalised method for this task, in which speakers are grouped into profiles according to their referential behaviour. Intrinsic evaluation shows that the use of speaker’s profiles generally outperforms the personalised method found in previous work.
%R 10.18653/v1/W17-3536
%U https://aclanthology.org/W17-3536
%U https://doi.org/10.18653/v1/W17-3536
%P 233-237
Markdown (Informal)
[Improving the generation of personalised descriptions](https://aclanthology.org/W17-3536) (Castro Ferreira & Paraboni, INLG 2017)
ACL
- Thiago Castro Ferreira and Ivandré Paraboni. 2017. Improving the generation of personalised descriptions. In Proceedings of the 10th International Conference on Natural Language Generation, pages 233–237, Santiago de Compostela, Spain. Association for Computational Linguistics.