@inproceedings{perez-beltrachini-gardent-2017-analysing,
title = "Analysing Data-To-Text Generation Benchmarks",
author = "Perez-Beltrachini, Laura and
Gardent, Claire",
editor = "Alonso, Jose M. and
Bugar{\'\i}n, Alberto and
Reiter, Ehud",
booktitle = "Proceedings of the 10th International Conference on Natural Language Generation",
month = sep,
year = "2017",
address = "Santiago de Compostela, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-3537",
doi = "10.18653/v1/W17-3537",
pages = "238--242",
abstract = "A generation system can only be as good as the data it is trained on. In this short paper, we propose a methodology for analysing data-to-text corpora used for training Natural Language Generation (NLG) systems. We apply this methodology to three existing benchmarks. We conclude by eliciting a set of criteria for the creation of a data-to-text benchmark which could help better support the development, evaluation and comparison of linguistically sophisticated data-to-text generators.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="perez-beltrachini-gardent-2017-analysing">
<titleInfo>
<title>Analysing Data-To-Text Generation Benchmarks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Perez-Beltrachini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Gardent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Alonso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Bugarín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santiago de Compostela, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A generation system can only be as good as the data it is trained on. In this short paper, we propose a methodology for analysing data-to-text corpora used for training Natural Language Generation (NLG) systems. We apply this methodology to three existing benchmarks. We conclude by eliciting a set of criteria for the creation of a data-to-text benchmark which could help better support the development, evaluation and comparison of linguistically sophisticated data-to-text generators.</abstract>
<identifier type="citekey">perez-beltrachini-gardent-2017-analysing</identifier>
<identifier type="doi">10.18653/v1/W17-3537</identifier>
<location>
<url>https://aclanthology.org/W17-3537</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>238</start>
<end>242</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analysing Data-To-Text Generation Benchmarks
%A Perez-Beltrachini, Laura
%A Gardent, Claire
%Y Alonso, Jose M.
%Y Bugarín, Alberto
%Y Reiter, Ehud
%S Proceedings of the 10th International Conference on Natural Language Generation
%D 2017
%8 September
%I Association for Computational Linguistics
%C Santiago de Compostela, Spain
%F perez-beltrachini-gardent-2017-analysing
%X A generation system can only be as good as the data it is trained on. In this short paper, we propose a methodology for analysing data-to-text corpora used for training Natural Language Generation (NLG) systems. We apply this methodology to three existing benchmarks. We conclude by eliciting a set of criteria for the creation of a data-to-text benchmark which could help better support the development, evaluation and comparison of linguistically sophisticated data-to-text generators.
%R 10.18653/v1/W17-3537
%U https://aclanthology.org/W17-3537
%U https://doi.org/10.18653/v1/W17-3537
%P 238-242
Markdown (Informal)
[Analysing Data-To-Text Generation Benchmarks](https://aclanthology.org/W17-3537) (Perez-Beltrachini & Gardent, INLG 2017)
ACL
- Laura Perez-Beltrachini and Claire Gardent. 2017. Analysing Data-To-Text Generation Benchmarks. In Proceedings of the 10th International Conference on Natural Language Generation, pages 238–242, Santiago de Compostela, Spain. Association for Computational Linguistics.