@inproceedings{brad-rebedea-2017-neural,
title = "Neural Paraphrase Generation using Transfer Learning",
author = "Brad, Florin and
Rebedea, Traian",
editor = "Alonso, Jose M. and
Bugar{\'\i}n, Alberto and
Reiter, Ehud",
booktitle = "Proceedings of the 10th International Conference on Natural Language Generation",
month = sep,
year = "2017",
address = "Santiago de Compostela, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-3542",
doi = "10.18653/v1/W17-3542",
pages = "257--261",
abstract = "Progress in statistical paraphrase generation has been hindered for a long time by the lack of large monolingual parallel corpora. In this paper, we adapt the neural machine translation approach to paraphrase generation and perform transfer learning from the closely related task of entailment generation. We evaluate the model on the Microsoft Research Paraphrase (MSRP) corpus and show that the model is able to generate sentences that capture part of the original meaning, but fails to pick up on important words or to show large lexical variation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="brad-rebedea-2017-neural">
<titleInfo>
<title>Neural Paraphrase Generation using Transfer Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Florin</namePart>
<namePart type="family">Brad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Traian</namePart>
<namePart type="family">Rebedea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Alonso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Bugarín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santiago de Compostela, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Progress in statistical paraphrase generation has been hindered for a long time by the lack of large monolingual parallel corpora. In this paper, we adapt the neural machine translation approach to paraphrase generation and perform transfer learning from the closely related task of entailment generation. We evaluate the model on the Microsoft Research Paraphrase (MSRP) corpus and show that the model is able to generate sentences that capture part of the original meaning, but fails to pick up on important words or to show large lexical variation.</abstract>
<identifier type="citekey">brad-rebedea-2017-neural</identifier>
<identifier type="doi">10.18653/v1/W17-3542</identifier>
<location>
<url>https://aclanthology.org/W17-3542</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>257</start>
<end>261</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Paraphrase Generation using Transfer Learning
%A Brad, Florin
%A Rebedea, Traian
%Y Alonso, Jose M.
%Y Bugarín, Alberto
%Y Reiter, Ehud
%S Proceedings of the 10th International Conference on Natural Language Generation
%D 2017
%8 September
%I Association for Computational Linguistics
%C Santiago de Compostela, Spain
%F brad-rebedea-2017-neural
%X Progress in statistical paraphrase generation has been hindered for a long time by the lack of large monolingual parallel corpora. In this paper, we adapt the neural machine translation approach to paraphrase generation and perform transfer learning from the closely related task of entailment generation. We evaluate the model on the Microsoft Research Paraphrase (MSRP) corpus and show that the model is able to generate sentences that capture part of the original meaning, but fails to pick up on important words or to show large lexical variation.
%R 10.18653/v1/W17-3542
%U https://aclanthology.org/W17-3542
%U https://doi.org/10.18653/v1/W17-3542
%P 257-261
Markdown (Informal)
[Neural Paraphrase Generation using Transfer Learning](https://aclanthology.org/W17-3542) (Brad & Rebedea, INLG 2017)
ACL
- Florin Brad and Traian Rebedea. 2017. Neural Paraphrase Generation using Transfer Learning. In Proceedings of the 10th International Conference on Natural Language Generation, pages 257–261, Santiago de Compostela, Spain. Association for Computational Linguistics.