@inproceedings{costa-jussa-etal-2017-byte,
title = "Byte-based Neural Machine Translation",
author = "Costa-juss{\`a}, Marta R. and
Escolano, Carlos and
Fonollosa, Jos{\'e} A. R.",
editor = "Faruqui, Manaal and
Schuetze, Hinrich and
Trancoso, Isabel and
Yaghoobzadeh, Yadollah",
booktitle = "Proceedings of the First Workshop on Subword and Character Level Models in {NLP}",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4123",
doi = "10.18653/v1/W17-4123",
pages = "154--158",
abstract = "This paper presents experiments comparing character-based and byte-based neural machine translation systems. The main motivation of the byte-based neural machine translation system is to build multi-lingual neural machine translation systems that can share the same vocabulary. We compare the performance of both systems in several language pairs and we see that the performance in test is similar for most language pairs while the training time is slightly reduced in the case of byte-based neural machine translation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="costa-jussa-etal-2017-byte">
<titleInfo>
<title>Byte-based Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Escolano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">José</namePart>
<namePart type="given">A</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Fonollosa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Subword and Character Level Models in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manaal</namePart>
<namePart type="family">Faruqui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schuetze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Trancoso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yadollah</namePart>
<namePart type="family">Yaghoobzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents experiments comparing character-based and byte-based neural machine translation systems. The main motivation of the byte-based neural machine translation system is to build multi-lingual neural machine translation systems that can share the same vocabulary. We compare the performance of both systems in several language pairs and we see that the performance in test is similar for most language pairs while the training time is slightly reduced in the case of byte-based neural machine translation.</abstract>
<identifier type="citekey">costa-jussa-etal-2017-byte</identifier>
<identifier type="doi">10.18653/v1/W17-4123</identifier>
<location>
<url>https://aclanthology.org/W17-4123</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>154</start>
<end>158</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Byte-based Neural Machine Translation
%A Costa-jussà, Marta R.
%A Escolano, Carlos
%A Fonollosa, José A. R.
%Y Faruqui, Manaal
%Y Schuetze, Hinrich
%Y Trancoso, Isabel
%Y Yaghoobzadeh, Yadollah
%S Proceedings of the First Workshop on Subword and Character Level Models in NLP
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F costa-jussa-etal-2017-byte
%X This paper presents experiments comparing character-based and byte-based neural machine translation systems. The main motivation of the byte-based neural machine translation system is to build multi-lingual neural machine translation systems that can share the same vocabulary. We compare the performance of both systems in several language pairs and we see that the performance in test is similar for most language pairs while the training time is slightly reduced in the case of byte-based neural machine translation.
%R 10.18653/v1/W17-4123
%U https://aclanthology.org/W17-4123
%U https://doi.org/10.18653/v1/W17-4123
%P 154-158
Markdown (Informal)
[Byte-based Neural Machine Translation](https://aclanthology.org/W17-4123) (Costa-jussà et al., SCLeM 2017)
ACL
- Marta R. Costa-jussà, Carlos Escolano, and José A. R. Fonollosa. 2017. Byte-based Neural Machine Translation. In Proceedings of the First Workshop on Subword and Character Level Models in NLP, pages 154–158, Copenhagen, Denmark. Association for Computational Linguistics.